Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Biofactors ; 50(2): 392-404, 2024.
Article in English | MEDLINE | ID: mdl-37921575

ABSTRACT

Gut microbes play a pivotal role in host physiology by producing beneficial or detrimental metabolites. Gut bacteria metabolize dietary choline and L-carnitine to trimethylamine (TMA) which is then converted to trimethylamine-N-oxide (TMAO). An elevated circulating TMAO is associated with diabetes, obesity, cardiovascular disease, and cancer in humans. In the present study, we investigated the effect of dietary blueberries and strawberries at a nutritional dosage on TMA/TMAO production and the possible role of gut microbes. Blueberry cohort mice received a control (C) or freeze-dried blueberry supplemented (CB) diet for 12 weeks and subgroups received an antibiotics cocktail (CA and CBA). Strawberry cohort mice received a control (N) or strawberry-supplemented (NS) diet and subgroups received antibiotics (NA and NSA). Metabolic parameters, choline, TMA, and TMAO were assessed in addition to microbial profiling and characterization of berry powders. Blueberry supplementation (equivalent to 1.5 human servings) reduced circulating TMAO in CB versus C mice (~48%) without changing choline or TMA. This effect was not mediated through alterations in metabolic parameters. Dietary strawberries did not reduce choline, TMA, or TMAO. Depleting gut microbes with antibiotics in these cohorts drastically reduced TMA and TMAO to not-quantified levels. Further, dietary blueberries increased the abundance of bacterial taxa that are negatively associated with circulating TMA/TMAO suggesting the role of gut microbes. Our phenolic profiling indicates that this effect could be due to chlorogenic acid and increased phenolic contents in blueberries. Our study provides evidence for considering dietary blueberries to reduce TMAO and prevent TMAO-induced complications.


Subject(s)
Blueberry Plants , Gastrointestinal Microbiome , Methylamines , Humans , Mice , Animals , Blueberry Plants/metabolism , Mice, Inbred CBA , Choline/metabolism , Anti-Bacterial Agents/pharmacology
2.
J Nutr Biochem ; 66: 63-69, 2019 04.
Article in English | MEDLINE | ID: mdl-30771735

ABSTRACT

Gut microbiota contributes to the biological activities of berry anthocyanins by transforming them into bioactive metabolites, and anthocyanins support the growth of specific bacteria, indicating a two-way relationship between anthocyanins and microbiota. In the present study, we tested the hypothesis that strawberry supplementation alters gut microbial ecology in diabetic db/db mice. Control (db/+) and diabetic (db/db) mice (7 weeks old) consumed standard diet or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for 10 weeks. Colon contents were used to isolate bacterial DNA. V4 variable region of 16S rRNA gene was amplified. Data analyses were performed using standardized pipelines (QIIME 1.9 and R packages). Differences in predictive metagenomics function were identified by PICRUSt. Principal coordinate analyses confirmed that the microbial composition was significantly influenced by both host genotype and strawberry consumption. Further, α-diversity indices and ß-diversity were different at the phylum and genus levels, and genus and operational taxonomical units levels, respectively (P<.05). At the phylum level, strawberry supplementation decreased the abundance of Verrucomicrobia in db/db + SB vs. db/db mice (P<.05). At the genus level, db/db mice exhibited a decrease in the abundance of Bifidobacterium, and strawberry supplementation increased Bifidobacterium in db/db + SB vs. db/db mice (P<.05). PICRUSt revealed significant differences in 45 predicted metabolic functions among the 3 groups. Our study provides evidence for marked changes in the composition and functional potential of the gut microbiome with strawberry supplementation in diabetic mice. Importantly, strawberry supplementation increased the abundance of beneficial bacteria Bifidobacterium which play a pivotal role in the metabolism of anthocyanins.


Subject(s)
Diabetes Mellitus, Experimental/microbiology , Fragaria , Gastrointestinal Microbiome/physiology , Animals , Diabetes Mellitus, Experimental/diet therapy , Dietary Supplements , Male , Metabolic Networks and Pathways , Mice, Inbred C57BL , Mice, Mutant Strains , Receptors, Leptin/genetics
3.
Int J Cardiol ; 263: 111-117, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29681407

ABSTRACT

BACKGROUND: Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. METHODS: Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ±â€¯25 mM glucose and 100 µM palmitate. RESULTS: db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. CONCLUSIONS: Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/physiopathology , Fragaria , Vascular Diseases/diet therapy , Vascular Diseases/physiopathology , Animals , Diabetes Mellitus, Type 2/genetics , Dietary Supplements , Inflammation/diet therapy , Inflammation/genetics , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Vascular Diseases/genetics , Vasodilation/physiology
4.
Int J Cardiol ; 261: 155-158, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29544868

ABSTRACT

BACKGROUND: Glycosaminoglycan (GAG), a major component of the endothelial glycocalyx, is severely perturbed in diabetic vasculature leading to endothelial inflammation and vascular disease in diabetes. We tested the hypothesis that blueberry metabolites (BBM) ameliorate endothelial inflammation in diabetic endothelial cells (ECs) by restoring cell surface GAGs. METHODS: ECs isolated from healthy individuals [human aortic ECs (HAECs)] and diabetic patients (diabetic HAECs) were treated with ±BBM (benzoic acid-4-sulfate, hippuric acid, hydroxyhippuric acid, isovanillic acid-3-sulfate, and vanillic acid-4-sulfate at concentrations known to circulate in human plasma following blueberry consumption) for 3 days, and indices for endothelial inflammation were measured. To analyze GAGs, ECs were incubated with sulfate-free medium supplemented with [35S] Na2SO4 ±â€¯BBM. Total GAGs in ECs and medium were purified using DEAE-Sepharose column and were analyzed with high-pressure liquid chromatography coupled to an inline flow scintillation analyzer. Heparan sulfate/chondroitin sulfate ratio and disaccharide composition of GAGs from the medium were analyzed using DEAE-3SW column and Dionex CarboPac PA1 column, respectively. RESULTS: BBM suppressed diabetes-induced monocyte binding to ECs, and reduced the expression of inflammatory markers in diabetic HAECs. Diabetic HAECs displayed a decrease in [35S] sulfate incorporation into the cell surface GAGs indicating the dysregulation of sulfated GAGs. However, treatment with BBM restored the levels of GAGs in diabetic HAECs. The composition, heparan sulfate/chondroitin sulfate ratio, and disaccharide composition of GAGs from medium were similar among groups. CONCLUSIONS: BBM restored cell surface GAGs and attenuated endothelial inflammation in diabetic HAECs. Blueberry might complement conventional therapies to improve vascular complications in diabetes.


Subject(s)
Aorta/metabolism , Blueberry Plants/metabolism , Diabetes Mellitus, Type 2/metabolism , Endothelium, Vascular/metabolism , Glycosaminoglycans/metabolism , Plant Extracts/pharmacology , Aorta/cytology , Aorta/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Cells, Cultured , Diabetes Mellitus, Type 2/pathology , Endothelium, Vascular/drug effects , Humans , Inflammation/metabolism , Inflammation/pathology , Plant Extracts/isolation & purification
5.
Exp Biol Med (Maywood) ; 241(18): 2056-2062, 2016 12.
Article in English | MEDLINE | ID: mdl-27465143

ABSTRACT

Endothelial dysfunction occurs when there are imbalances between factors that regulate the synthesis and degradation of nitric oxide (NO•), and has been reported in patients with hyperglycemia and insulin resistance. We reported that supplementation with γ-tocopherol (γ-T) in humans limits impairments in endothelial function otherwise induced by postprandial hyperglycemia. Given the rapid metabolism of γ-T into γ-carboxyethyl hydroxychroman (γ-CEHC), we hypothesized that the vasoprotective activities of γ-T could be attributed to its metabolite γ-CEHC. To test this, human aortic endothelial cells (HAECs) treated with 0 (vehicle control) or 3 µM γ-CEHC for 24 h prior to incubation with normal (5 mM) or high (25 mM) glucose for 48 h. High-glucose increased levels of uncoupled endothelial nitric oxide synthase (eNOS) as evidenced by reduced ( p < 0.05) eNOS dimer:monomer. High glucose also prevented insulin-stimulated increases in p-AktSer473: total Akt, p-eNOSSer1177: total eNOS, and NO• production. These adverse changes were accompanied by increased ( p < 0.05) reactive oxygen species and mRNA expression of inflammatory mediators (VCAM-1, E-selectin, IL-8). However, each deleterious response evoked by high glucose was prevented when HAECs were incubated with γ-CEHC prior to the high glucose challenge. Taken together, our data support the hypothesis that vascular protection provided by γ-T in vivo may be elicited through the bioactivity of its metabolite, γ-CEHC. Furthermore, it is possible that the antioxidant and anti-inflammatory activities of γ-CEHC may mediate this protective activity.


Subject(s)
Chromans/pharmacology , Endothelium, Vascular/drug effects , Glucose/pharmacology , Nitric Oxide/metabolism , Propionates/pharmacology , Biological Availability , Cells, Cultured , Endothelium, Vascular/metabolism , Humans , Insulin Resistance , Nitric Oxide Synthase Type III/metabolism , Reactive Oxygen Species/metabolism
6.
J Med Food ; 17(12): 1287-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25076190

ABSTRACT

Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.


Subject(s)
Diet, High-Fat , Drugs, Chinese Herbal/therapeutic use , Metabolic Syndrome/diet therapy , Obesity/prevention & control , Panax , Phytotherapy , Adipogenesis , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Fasting/blood , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , Hypertension/prevention & control , Hypothalamus/metabolism , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Muscle, Skeletal/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL