Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 17(4): e1009477, 2021 04.
Article in English | MEDLINE | ID: mdl-33857257

ABSTRACT

The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.


Subject(s)
Phytophthora/pathogenicity , Plant Diseases/prevention & control , Pythium/pathogenicity , Solanum tuberosum/genetics , Molecular Dynamics Simulation , Necrosis , Phytophthora/genetics , Plant Diseases/parasitology , Plant Leaves/genetics , Plant Leaves/parasitology , Pythium/genetics , Solanum tuberosum/parasitology , Surface Plasmon Resonance , Nicotiana/genetics , Nicotiana/parasitology
2.
Biochem J ; 450(3): 559-71, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23282185

ABSTRACT

PVL (Panton-Valentine leukocidin) and other Staphylococcus aureus ß-stranded pore-forming toxins are important virulence factors involved in various pathologies that are often necrotizing. The present study characterized leukotoxin inhibition by selected SCns (p-sulfonato-calix[n]arenes): SC4, SC6 and SC8. These chemicals have no toxic effects on human erythrocytes or neutrophils, and some are able to inhibit both the activity of and the cell lysis by leukotoxins in a dose-dependent manner. Depending on the type of leukotoxins and SCns, flow cytometry revealed IC50 values of 6-22 µM for Ca2+ activation and of 2-50 µM for cell lysis. SCns were observed to affect membrane binding of class S proteins responsible for cell specificity. Electrospray MS and surface plasmon resonance established supramolecular interactions (1:1 stoichiometry) between SCns and class S proteins in solution, but not class F proteins. The membrane-binding affinity of S proteins was Kd=0.07-6.2 nM. The binding ability was completely abolished by SCns at different concentrations according to the number of benzenes (30-300 µM; SC8>SC6≫SC4). The inhibitory properties of SCns were also observed in vivo in a rabbit model of PVL-induced endophthalmitis. These calixarenes may represent new therapeutic avenues aimed at minimizing inflammatory reactions and necrosis due to certain virulence factors.


Subject(s)
Calixarenes/pharmacology , Exotoxins/antagonists & inhibitors , Exotoxins/metabolism , Staphylococcus aureus/metabolism , Animals , Bacterial Toxins/antagonists & inhibitors , Bacterial Toxins/metabolism , Calixarenes/metabolism , Down-Regulation/drug effects , Drug Evaluation, Preclinical , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/metabolism , Humans , Macromolecular Substances/metabolism , Models, Biological , Phenols/metabolism , Phenols/pharmacology , Protein Binding/drug effects , Protein Binding/physiology , Rabbits , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/metabolism , Staphylococcus aureus/pathogenicity , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism
3.
J Med Chem ; 55(14): 6413-26, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22731783

ABSTRACT

Bacterial DNA gyrase is a well-established and validated target for the development of novel antibacterials. Starting from the available structural information about the binding of the natural product inhibitor, clorobiocin, we identified a novel series of 4'-methyl-N(2)-phenyl-[4,5'-bithiazole]-2,2'-diamine inhibitors of gyrase B with a low micromolar inhibitory activity by implementing a two-step structure-based design procedure. This novel class of DNA gyrase inhibitors was extensively investigated by various techniques (differential scanning fluorimetry, surface plasmon resonance, and microscale thermophoresis). The binding mode of the potent inhibitor 18 was revealed by X-ray crystallography, confirming our initial in silico binding model. Furthermore, the high resolution of the complex structure allowed for the placement of the Gly97-Ser108 flexible loop, thus revealing its role in binding of this class of compounds. The crystal structure of the complex protein G24 and inhibitor 18 provides valuable information for further optimization of this novel class of DNA gyrase B inhibitors.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors , Adenosine Triphosphate/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Drug Evaluation, Preclinical , Models, Molecular , Novobiocin/analogs & derivatives , Novobiocin/metabolism , Protein Conformation , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL