Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Pharmacol Sci ; 145(3): 273-278, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33602508

ABSTRACT

Activated microglia induce brain inflammation and neuronal death. Panaxytriol, ((3R,9R,10R)-Heptadec-1-en-4,6-diyne-3,9,10-triol), is a component of Panax ginseng C. A. Meyer extracts and activates the Nrf2-ARE signaling pathway. However, little is known about its effects on activated microglia in the brain. In this study, we investigated the effect of panaxytriol on lipopolysaccharide (LPS)-induced activated microglia in BV-2 cells. Panaxytriol suppressed LPS-induced NO production and inhibited the increase in iNOS protein expression in BV-2 cells. Besides, panaxytriol inhibited the mRNA expression of proinflammatory cytokines such as TNF-α, IL-1ß, and IL-6. The inhibitory effect of panaxytriol on microglia activation did not affect the Nrf2-ARE pathway and the MAPK pathway. However, panaxytriol suppressed LPS-induced NF-κB nuclear translocation. These results suggest that panaxytriol inhibits the LPS-induced activation of microglia via the inhibition of NF-κB signaling pathway.


Subject(s)
Enediynes/pharmacology , Fatty Alcohols/pharmacology , Microglia/metabolism , Signal Transduction/drug effects , Animals , Brain/cytology , Cell Line , Cytokines/metabolism , Enediynes/isolation & purification , Fatty Alcohols/isolation & purification , Inflammation Mediators/metabolism , Mice , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Panax/chemistry , Signal Transduction/genetics
2.
Biochem Pharmacol ; 185: 114439, 2021 03.
Article in English | MEDLINE | ID: mdl-33539814

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease with severe pruritus. Berberine, a naturally occurring isoquinoline alkaloid, has anti-inflammatory effects. This study investigated the effects and molecular mechanisms of berberine on AD-like symptoms in mice. In this study, NC/Nga mice with atopy-like dermatitis (dermatitis mice), fibroblast and mast cells were used. In dermatitis mice, intermittent oral administrations of berberine 3 times a week for 12 days inhibited skin symptom, itching, cutaneous infiltration of eosinophils and mast cells, and the expression of cutaneous eotaxin, macrophage migration inhibitory factor (MIF) and IL-4. Berberine also attenuated IL-4/MIF-induced eotaxin in fibroblasts and allergen-induced MIF and IL-4 in mast cells. In mast cells, the GeneChip® microarray showed that antigen increased the expression of EIF3F and MALT1, inhibited by berberine. The siRNAs for them inhibited the expression of MIF and IL-4 in antigen-stimulated mast cells. These results suggest that berberine improves AD-like symptoms through the inhibition of the eotaxin and pro-inflammatory cytokine expression and the related inflammatory cell recruitment. It is also suggested that the downregulation of EIF3F and MALT1 by berberine is involved in suppressing the cytokine expression. Taken together, berberine or berberine-containing crude drugs are expected to contribute to the improvement of AD symptoms.


Subject(s)
Berberine/therapeutic use , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Eukaryotic Initiation Factor-3/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Skin/metabolism , Animals , Berberine/pharmacology , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/physiology , Eukaryotic Initiation Factor-3/antagonists & inhibitors , Male , Mice , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Skin/drug effects
3.
J Nat Med ; 75(1): 48-55, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32816150

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) manifests as mechanical allodynia and hyperalgesia, and is one of the main adverse effects of chemotherapeutic agents. Currently available therapeutic drugs are not sufficiently effective for the management of this adverse effect in the clinic. Therefore, the development of novel therapeutic agents for treating CIPN is necessary. Our previous study suggested the potential of aucubin and pedicularis-lactone (1) as active compounds responsible for the anti-allodynic property of Plantaginis Semen. However, the activity of purified 1 has not been evaluated due to its low content in Plantaginis Semen. In the present study, 1 was isolated from Viticis Fructus, as well as viteoid I (2) and viteoid II (3) during the process of isolation. The purities of isolated 1, 2, and 3 were determined as 67.15%, 92.12%, and 86.72%, respectively, by quantitative 1H-NMR, using DSS-d6 as an internal standard. Repeated daily oral administration of these three iridoids at a dose of 15 mg/kg significantly inhibited the PTX-induced mechanical allodynia in mice, suggesting the anti-allodynic activities of 1, 2, and 3. This study provides confirmatory evidence for the anti-allodynic activity of purified 1 and also reveals two additional active iridoids from Viticis Fructus. These three iridoids could be potential candidates for the treatment of CIPN.


Subject(s)
Hyperalgesia/drug therapy , Iridoids/pharmacology , Paclitaxel/adverse effects , Vitex/chemistry , Animals , Disease Models, Animal , Drug Interactions , Male , Mice , Mice, Inbred C57BL , Plant Extracts/pharmacology
4.
J Nat Med ; 74(3): 615, 2020 06.
Article in English | MEDLINE | ID: mdl-32274686

ABSTRACT

The article Search of anti-allodynic compounds from Plantaginis Semen, a crude drug ingredient of Kampo formula "Goshajinkigan".

6.
Phytother Res ; 34(6): 1320-1328, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31840901

ABSTRACT

Ultraviolet (UV) radiation elicits melanogenesis and pigmentation in the skin. Apigenin (4',5,7-trihydroxyflavone [AGN]) is a plant flavone contained in various herbs, fruits, and vegetables. We herein investigated antimelanogenic properties of AGN and the molecular mechanisms of the action of AGN. In UVB-treated mice, AGN inhibited cutaneous hyperpigmentation and macrophage migration inhibitory factor (MIF) expression as a melanogenesis-related key factor. In mouse keratinocytes, AGN inhibited the expression of MIF and also the related factors (e.g., stem cell factor and proteinase-activated receptor 2) induced by MIF. In addition to ellagic acid as a casein kinase II (CK2) inhibitor, AGN suppressed CK2 enzymatic activity and UVB-induced CK2 expression and subsequent phosphorylation of IκB and MIF expression. These results suggest that AGN inhibits UVB-induced hyperpigmentation through the regulation of CK2-mediated MIF expression in keratinocytes.


Subject(s)
Apigenin/physiology , Apigenin/therapeutic use , Casein Kinase II/drug effects , Hyperpigmentation/drug therapy , Macrophage Migration-Inhibitory Factors/drug effects , Ultraviolet Rays/adverse effects , Animals , Apigenin/pharmacology , Humans , Hyperpigmentation/pathology , Mice
7.
J Nat Med ; 73(4): 761-768, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31190267

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the dose-limiting side effects of cancer chemotherapy. Although the control of CIPN is important, it is difficult to manage with currently available therapeutic drugs. Therefore, there is a need for novel therapeutic agents for treating CIPN. Goshajinkigan (GJG) is a Kampo formula composed of ten crude drugs. While GJG has been used for the treatment of CIPN, the active constituents of GJG and their underlying mechanisms of pharmacological effects are still unknown. Our previous study revealed that repetitive oral administration of the water extract of Plantaginis Semen, a crude drug ingredient of GJG, inhibited the mechanical allodynia induced by an intraperitoneal injection of paclitaxel in mice. To elucidate the active compounds of Plantaginis Semen, activity-guided separation of the water extract of Plantaginis Semen was performed. From the active fraction, four iridoids (1-4) were identified. Repetitive oral administration of aucubin (1) at 100 or 30 mg/kg and 100 mg/kg of the fraction crude 3 [primarily comprised of pedicularis-lactone (3)], showed anti-allodynic activity, suggesting 1 and 3 could be some of the active compounds responsible for the anti-allodynic property of Plantaginis Semen and GJG. Our study establishes that oral administration of 1 has potent anti-allodynic effect in addition to the activity of intraperitoneally administered 1 reported previously. Identification of active anti-allodynic compounds found in Kampo formulations will support the development of novel therapies for the management of CIPN in cancer patients.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hyperalgesia/drug therapy , Peripheral Nervous System Diseases/drug therapy , Plant Extracts/pharmacology , Plantago/chemistry , Animals , Hyperalgesia/chemically induced , Iridoid Glucosides/pharmacology , Iridoids/pharmacology , Lactones/pharmacology , Male , Medicine, Kampo , Mice , Mice, Inbred C57BL , Paclitaxel/therapeutic use , Peripheral Nervous System Diseases/chemically induced
8.
Article in English | MEDLINE | ID: mdl-31118957

ABSTRACT

Chemotherapeutic drugs typically induce peripheral neuropathy, which is a major dose-limiting side effect of these drugs and is difficult to manage. In this study, we examined whether the traditional herbal formulation Kei-kyoh-zoh-soh-oh-shin-bu-toh (KSOT) could relieve the mechanical allodynia induced by chemotherapeutic drugs (oxaliplatin, paclitaxel, vincristine, and bortezomib) in mice. A single intraperitoneal injection of oxaliplatin, paclitaxel, vincristine, and bortezomib was used to induce mechanical allodynia, which peaked on days 10, 14, 14, and 12 after the injection, respectively. A single oral administration of KSOT did not inhibit mechanical allodynia after any of the treatments. However, prophylactic repetitive oral administrations of KSOT inhibited the exacerbation of mechanical allodynia induced by oxaliplatin but were not effective for allodynia induced by the other drugs. A single intraperitoneal injection of oxaliplatin did not alter the mRNA expression of the NMDA receptor NR2B in the spinal cord and that of neuregulin-1 in the sciatic nerve. In addition, the number of microglia in spinal dorsal horn did not increase in oxaliplatin-treated mice. However, the number of reactivated astrocytes in the spinal dorsal horn increased, which could be inhibited by repetitive administration of KSOT. These results suggest that prophylactic repetitive treatment of KSOT attenuates oxaliplatin-induced mechanical allodynia by decreasing the number of spinal astrocytes.

9.
Biochem Biophys Res Commun ; 512(2): 352-359, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30894274

ABSTRACT

The ability to detect noxious stimulation is essential to an organism's survival and wellbeing. Chronic pain is characterized by abnormal sensitivity to normal stimulation coupled with a feeling of unpleasantness. This condition afflicts people worldwide and severely impacts their quality of life and has become an escalating health problem. The spinal cord dorsal horn is critically involved in nociception and chronic pain. Especially, the substantia gelatinosa (SG) neurons of lamina II, which receives nociceptive inputs from primary afferents. Two major models are used to study chronic pain in animals, including nerve injury and the injection of a complete Freund's adjuvant (CFA) into the hind paw. However, how these models induce glutamatergic synaptic plasticity in the spinal cord is not fully understood. Here, we studied synaptic plasticity on excitatory transmissions in the adult rat SG neurons. Using in vitro and in vivo whole-cell patch-clamp recording methods, we analyzed spontaneous excitatory postsynaptic currents (sEPSCs) 2 weeks following nerve injury and 1 week following CFA injection. In the spinal slice preparation, these models increased both the frequency and amplitude of sEPSCs in SG neurons. The frequency and amplitude of sEPSCs in the nerve injury and the CFA group were reduced by the presence of tetrodotoxin (TTX). By contrast, TTX did not reduce the sEPSCs compared with miniature EPSCs in naïve rats. Next, we analyzed the active electrophysiological properties of neurons, which included; resting membrane potentials (RMPs) and the generation of action potentials (APs) in vitro. Interestingly, about 20% of recorded SG neurons in this group elicited spontaneous APs (sAPs) without changing the RMPs. Furthermore, we performed in vivo whole-cell patch-clamp recording in SG neurons to analyze active electrophysiological properties under physiological conditions. Importantly, in vivo SG neurons generated sAPs without affecting RMP in the nerve injury and the CFA group. Our study describes how animal models of chronic pain influence both passive and active electrophysiological properties of spinal SG neurons.


Subject(s)
Chronic Pain/physiopathology , Glutamic Acid/physiology , Spinal Cord Dorsal Horn/physiopathology , Animals , Disease Models, Animal , Excitatory Postsynaptic Potentials/physiology , In Vitro Techniques , Inflammation/physiopathology , Male , Membrane Potentials/physiology , Models, Neurological , Neuralgia/physiopathology , Neuronal Plasticity/physiology , Nociception/physiology , Rats , Rats, Sprague-Dawley , Substantia Gelatinosa/physiology , Synaptic Transmission/physiology
10.
J Anesth ; 32(5): 731-739, 2018 10.
Article in English | MEDLINE | ID: mdl-30167784

ABSTRACT

PURPOSE: Neuronal inflammation is caused by systemic inflammation and induces cognitive dysfunction. IL-6 plays a crucial role in therapies for neuronal inflammation and cognitive dysfunction. Remifentanil, an ultra-short-acting opioid, controls inflammatory reactions in the periphery, but not in the brain. Therefore, the anti-inflammatory effects of remifentanil in neuronal tissue and the involvement of cAMP in these effects were investigated in the present study. METHODS: Mice were divided into 4 groups: control, remifentanil, LPS, and LPS + remifentanil. Brain levels of pro-inflammatory cytokine mRNA, and serum levels of corticosterone, catecholamine and IL-6 were measured in the 4 groups. The co-localization of IL-6 and astrocytes in the mouse brain after the LPS injection was validated by immunostaining. LPS and/or remifentanil-induced changes in intracellular cAMP levels in cultured glial cells were measured, and the effects of cAMP on LPS-induced IL-6 mRNA expression levels were evaluated. RESULTS: Remifentanil suppressed increase in IL-6 mRNA levels in the mouse brain, and also inhibited the responses of plasma IL-6, corticosterone, and noradrenaline in an inflammatory state. In the hypothalamus, IL-6 was localized in the median eminence, at which GFAP immunoreactivity was specifically detected. In cultured cells, remifentanil suppressed increase in IL-6 mRNA levels and intracellular cAMP levels after the administration of LPS, and this enhanced IL-6 mRNA expression in response to LPS. CONCLUSION: Remifentanil suppressed increase in IL-6 mRNA levels in the brain in an inflammatory state, and this effect may be attributed to its direct action on neuronal cells through the inhibition of intracellular cAMP rather than corticosterone.


Subject(s)
Cyclic AMP/metabolism , Inflammation/pathology , Interleukin-6/genetics , Remifentanil/pharmacology , Animals , Brain/metabolism , Cells, Cultured , Corticosterone/blood , Cytokines/metabolism , Hypothalamus/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Norepinephrine/blood , RNA, Messenger/metabolism , Rats
11.
Phytomedicine ; 25: 1-7, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28190463

ABSTRACT

BACKGROUND: The chemotherapeutic agent paclitaxel (PTX) causes refractory peripheral neuropathy as a side effect. Prophylactic oral administration of the traditional herbal medicine Shakuyakukanzoto containing Paeoniae Radix and Glycyrrhizae Radix prevents the development of PTX-induced mechanical allodynia in mice via peripheral effects, mostly due to Paeoniae Radix. However, the bioactive component responsible for the prevention of PTX-induced neuropathic pain remains unknown. PURPOSE: To determine whether a monoterpene glycoside paeoniflorin (PF), which is the principal bioactive constituent of Paeoniae Radix, has inhibitory effects on PTX-induced mechanical allodynia and investigate the underlying mechanisms. METHODS: C57BL/6NCr mice received a single intraperitoneal injection of PTX and then were topically administered PF to the planar surface twice daily for 13 days. Mechanical allodynia was evaluated by the von Frey filament test, peripheral nerve activity was recorded using bipolar electrodes, and demyelination in peripheral nerves was analysed by electron microscopy. Schwann cell line LY-PPB6 pre-treated with PF and then treated with PTX was used to analyse the expression of the transcription factor CHOP, a marker of endoplasmic reticulum (ER) stress, by western blotting. RESULTS: PTX caused mechanical allodynia and increased both spontaneous and mechanical stimuli-evoked peripheral nerve activities, whereas repetitive topical application of PF significantly attenuated PTX-induced allodynia, suppressed saphenous nerve firing, and inhibited demyelination in the plantar nerve. Moreover, in cultured Schwann cells, PF downregulated PTX-induced expression of CHOP, indicating the inhibition of ER stress. The attenuation of mechanical allodynia in mice and downregulation of CHOP levels in cell cultures was inhibited by adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-diprooylxanrhine, suggesting the involvement of A1R in PF-associated analgesic effects. CONCLUSION: These results suggest that prophylactic topical application of PF is effective in alleviating PTX-induced mechanical allodynia by protecting sensory nerves from demyelination via activation of the A1R.


Subject(s)
Glucosides/pharmacology , Hyperalgesia/metabolism , Monoterpenes/pharmacology , Neuralgia/metabolism , Paclitaxel/adverse effects , Paeonia/chemistry , Plant Extracts/pharmacology , Receptor, Adenosine A1/metabolism , Administration, Topical , Animals , Antineoplastic Agents/adverse effects , Benzoates/pharmacology , Benzoates/therapeutic use , Demyelinating Diseases/metabolism , Demyelinating Diseases/prevention & control , Glucosides/therapeutic use , Hyperalgesia/drug therapy , Male , Mice , Mice, Inbred C57BL , Monoterpenes/therapeutic use , Neuralgia/drug therapy , Phytotherapy , Plant Extracts/therapeutic use
12.
J Tradit Complement Med ; 7(1): 30-33, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28053885

ABSTRACT

Oxaliplatin-induced peripheral neuropathy characterized especially as cold dysesthesia is a major dose-limiting side effect of the drug and is very difficult to control. In the present study, we examined whether the traditional herbal formulation Shakuyakukanzoto (SKT: Sháo Yào Gan Cǎo Tang) could relieve oxaliplatin-induced cold dysesthesia in mice. The inhibitory mechanisms were also investigated. Repetitive administration of SKT (0.1-1.0 g/kg) starting from the day after oxaliplatin injection inhibited cold dysesthesia in a dose-dependent manner. Our previous report has shown that the mRNA expression of transient receptor potential melastatin 8 (TRPM8), characterized as a cold-sensing cation channel, is increased in the dorsal root ganglia of mice treated with oxaliplatin. In addition, TRPM8 antagonist TC-I 2014 (10 and 30 mg/kg) also attenuated cold dysesthesia in oxaliplatin-treated mice. Taken together, it is suggested that TRPM8 is involved in the cold dysesthesia induced by oxaliplatin. Repetitive administration of SKT inhibited the mRNA expression of TRPM8 induced by oxaliplatin in the dorsal root ganglia. These results suggested that prophylactic repetitive administration of SKT is effective in preventing the exacerbation of oxaliplatin-induced cold dysesthesia by inhibiting the mRNA expression of TRPM8 in the dorsal root ganglia.

13.
J Tradit Complement Med ; 6(3): 305-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27419098

ABSTRACT

The chemotherapeutic agent paclitaxel (PTX) causes peripheral neuropathy as a major dose-limiting side effect, and this peripheral neuropathy is difficult to control. Our previous report showed that prophylactic repetitive administration of goshajinkigan ( niú che shèn qì wán), but not hachimijiogan ( ba wèi dì huáng wán), which lacks two of the constituents of goshajinkigan, inhibited PTX-induced mechanical allodynia in mice. Thus, the herbal medicines Plantaginis Semen ( che qián zǐ) or Achyranthis Radix ( niú xi) may contribute to the inhibitory action of goshajinkigan on the exacerbation of PTX-induced mechanical allodynia [Andoh et al, J. Tradit. Complement. Med. 2014; 4: 293-297]. Therefore, in this study, we examined whether an extract of Plantaginis Semen (EPS) or Achyranthis Radix (EAR) would relieve PTX-induced mechanical allodynia in mice. A single intraperitoneal injection of PTX caused mechanical allodynia, which peaked on day 14 after injection. Repetitive oral administration of EPS, but not EAR, starting from the day after PTX injection significantly inhibited the exacerbation of PTX-induced mechanical allodynia. Repetitive intraperitoneal injection of aucubin, one of the main components of EPS, starting from the day after PTX injection also significantly reduced PTX-induced mechanical allodynia. However, repetitive intraperitoneal injection of geniposide acid (a precursor of aucubin) or catalpol (a metabolite of aucubin) did not prevent the exacerbation of mechanical allodynia. These results suggest that prophylactic administration of EPS is effective for preventing the exacerbation of PTX-induced allodynia. Aucubin may contribute to the inhibitory action of EPS on the exacerbation of PTX-induced allodynia.

14.
PLoS One ; 11(3): e0152288, 2016.
Article in English | MEDLINE | ID: mdl-27023003

ABSTRACT

Atopic dermatitis (AD) is a common chronic inflammatory skin disease associated with various factors, including immunological abnormalities and exposure to allergens. Astaxanthin (AST) is a xanthophyll carotenoid that has recently been demonstrated to have anti-inflammatory effects and to regulate the expression of inflammatory cytokines. Thus, we investigated whether AST could improve the dermatitis and pruritus in a murine model of AD using NC/Nga mice. In addition to a behavioral evaluation, the effects of AST on the AD were determined by the clinical skin severity score, serum IgE level, histological analyses of skin, and by reverse transcription-PCR and Western blotting analyses for the expression of inflammation-related factors. AST (100 mg/kg) or vehicle (olive oil) was orally administered once day and three times a week for 26 days. When compared with vehicle-treated group, the administration of AST significantly reduced the clinical skin severity score. In addition, the spontaneous scratching in AD model mice was reduced by AST administration. Moreover, the serum IgE level was markedly decreased by the oral administration of AST compared to that in vehicle-treated mice. The number of eosinophils, total and degranulated mast cells all significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. The mRNA and protein levels of eotaxin, MIF, IL-4, IL-5 and L-histidine decarboxylase were significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. These results suggest that AST improves the dermatitis and pruritus in AD via the regulation of the inflammatory effects and the expression of inflammatory cytokines.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dermatitis, Atopic/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/blood , Dermatitis, Atopic/immunology , Drug Evaluation, Preclinical , Immunoglobulin E/blood , Male , Mice , Skin/drug effects , Skin/metabolism , Skin/pathology , Treatment Outcome , Xanthophylls/pharmacology , Xanthophylls/therapeutic use
15.
Article in English | MEDLINE | ID: mdl-25866544

ABSTRACT

Neuropathic pain is caused by nerve injury. Yokukansan (Yi-Gan San), a traditional Japanese (Kampo) medicine, has been widely used for neuropathic pain control. However, the analgesic mechanisms remain unknown. In this study, we investigated the analgesic mechanisms of yokukansan in a mouse model of neuropathic pain. Partial sciatic nerve ligation (PSL) induced mechanical allodynia in mice. Repetitive oral administration of the extracts of yokukansan and the constituent herbal medicine Atractylodis Lanceae Rhizoma, but not Glycyrrhizae Radix, relieved mechanical allodynia in the PSL mice and inhibited the PSL-induced expression of interleukin- (IL-) 6 mRNA in the spinal cord. Yokukansan did not attenuate intrathecal IL-6-induced mechanical allodynia. IL-6 immunoreactivity was detected in microglia and astrocytes in the spinal dorsal horn. These results suggest that yokukansan relieves mechanical allodynia in PSL mice by regulating the expression of IL-6 in astrocytes and/or microglia in the spinal cord. In addition, the components of Atractylodis Lanceae Rhizoma, one of the constituent herbal medicines in yokukansan, may play an important role in the regulation of IL-6 expression and neuropathic pain control.

16.
J Nat Med ; 69(2): 209-17, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25516374

ABSTRACT

Moutan Cortex and its major compounds have been shown to possess various biological activities, including anti-inflammatory properties. However, the effects of Moutan Cortex aqueous fraction (MCA) and its molecular mechanisms have yet to be elucidated. In this study, we attempted to evaluate the effects of MCA on mast cell-mediated allergy inflammation in vitro and in vivo compared with major Moutan Cortex compounds. Thus, we examined the anti-inflammatory effects of a water extract of Moutan Cortex by comparing the inhibition of ß-hexosaminadase and tumor necrosis factor-α (TNF-α) release in an aqueous fraction with other major compounds of Moutan Cortex. The inhibitory mechanism of MCA was investigated by western blotting in IgE-mediated DNP-BSA-stimulated RBL-2H3 cells. We confirmed the pharmacological effects of MCA on compound 48/80-induced allergic reactions in a mouse model by assessing scratching behavior and passive cutaneous anaphylaxis (PCA)-like reaction. Consequently, MCA inhibited IgE-mediated DNP-BSA-induced ß-hexosaminadase and TNF-α release via inactivation of p38, ERK, Akt, and NF-κB in RBL-2H3 cells. MCA reduced compound 48/80-induced PCA reaction and scratching behavior in mice. This inhibitory effect of MCA is more potent than major compounds of Moutan Cortex. In conclusion, our results suggest that MCA has more potential in the treatment of allergic inflammatory diseases compared to other major compounds of Moutan Cortex.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hypersensitivity/drug therapy , Inflammation/prevention & control , Mast Cells , NF-kappa B/metabolism , Passive Cutaneous Anaphylaxis/drug effects , Animals , Cattle , Dinitrophenols , Female , Hypersensitivity/metabolism , Hypersensitivity/pathology , Immunoglobulin E/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Mice, Inbred ICR , Paeonia , Protein Kinases/metabolism , Rats , Serum Albumin, Bovine , Tumor Necrosis Factor-alpha/metabolism , p-Methoxy-N-methylphenethylamine
17.
J Tradit Complement Med ; 4(4): 293-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25379475

ABSTRACT

Peripheral neuropathy is a major dose-limiting side effect of the chemotherapeutic agent paclitaxel. This study examined whether the three related traditional herbal formulations, goshajinkigan (GJG; Niú Che Shèn Qì Wán), hachimijiogan (HJG; Ba Wèi Dì Huáng Wán), and rokumigan (RMG; Liù Wèi Wán), would relieve paclitaxel-induced mechanical allodynia in mice. A single intraperitoneal injection of paclitaxel (5 mg/kg) induced mechanical allodynia, which peaked on day 14 after injection. On day 14 after paclitaxel injection, oral administration of GJG (0.1-1.0 g/kg) produced a significant inhibition of established allodynia, but HJG and RMG did not affect the allodynia. Repeated oral administration of GJG (0.1-1.0 g/kg) starting from the day after paclitaxel injection did not affect allodynia development, but significantly inhibited allodynia exacerbation. Repeated oral administration of HJG produced a slight inhibition of allodynia exacerbation, but that of RMG did not. These results suggest that prophylactic administration of GJG is effective in preventing the exacerbation of paclitaxel-induced allodynia. The herbal medicines Plantaginis Semen ( Che Qián Zǐ) and Achyranthis Radix ( Niú Xi), which are present in GJG but not in HJG, may contribute to the inhibitory action of GJG on the exacerbation of paclitaxel-induced allodynia.

18.
Article in English | MEDLINE | ID: mdl-24799939

ABSTRACT

Pleurotus eryngii (P. eryngii) is consumed as a fresh cultivated mushroom worldwide and demonstrated to have multiple beneficial effects. We investigated the anti-inflammatory effect of P. eryngii in mice with acute lung injury (ALI). Intranasal instillation of lipopolysaccharide (LPS) (10 µ g/site/mouse) induced marked lung inflammation (increase in the number of inflammatory cells, protein leakage, and production of nitric oxide in bronchoalveolar lavage fluid) as well as histopathological damage in the lung, 6 h after treatment. Mice administered heat-treated P. eryngii (0.3-1 g/kg, p.o. (HTPE)) 1 h before LPS challenge showed decreased pulmonary inflammation and ameliorated histopathological damage. These results suggest that HTPE has anti-inflammatory effects against ALI. Thus, P. eryngii itself may also have anti-inflammatory effects and could be a beneficial food for the prevention of ALI induced by bacterial infection.

19.
Article in English | MEDLINE | ID: mdl-24198846

ABSTRACT

Chemotherapy-induced peripheral neuropathy is a major dose-limiting side effect of commonly used chemotherapeutic agents. However, there are no effective strategies to treat the neuropathy. We examined whether Goshajinkigan, a herbal medicine, would prevent paclitaxel-induced allodynia without affecting the anticancer action in mice. Murine breast cancer 4T1 cells were inoculated into the mammary fat pad. Paclitaxel (10 and 20 mg/kg, intraperitoneal, alternate day from day 7 postinoculation) inhibited the tumor growth, and Goshajinkigan (1 g/kg, oral, daily from day 2 postinoculation) did not affect the antitumor action of paclitaxel. Mechanical allodynia developed in the inoculated region due to tumor growth and in the hind paw due to paclitaxel-induced neuropathy. Paclitaxel-induced allodynia was markedly prevented by Goshajinkigan, although tumor-associated allodynia was not inhibited by Goshajinkigan. These results suggest that Goshajinkigan prevents paclitaxel-induced peripheral neuropathy without interfering with the anti-cancer action of paclitaxel.

20.
Exp Eye Res ; 98: 97-103, 2012 May.
Article in English | MEDLINE | ID: mdl-22504036

ABSTRACT

Itching of ocular allergy is alleviated but not completely relieved by H(1) histamine receptor antagonists, suggesting that histamine is not the sole itch mediator in ocular allergy. We investigated whether leukotriene B(4) (LTB(4)), a mediator of cutaneous itch, is involved in the itch of ocular allergy in mice. Mice were immunized by the repeated subcutaneous injections of ragweed pollen and alum into the caudal back, and given a subconjunctival injection of ragweed pollen extract into the palpebra for allergic challenge. Challenge with ragweed pollen extract markedly elicited ocular scratching in sensitized mice. The scratching was almost abolished by mast cell deficiency. The H(1) antagonist terfenadine partially inhibited scratching at a dose that almost completely suppressed plasma extravasation. Scratching was inhibited by the glucocorticoid betamethasone and the 5-lipoxygenase inhibitor zileuton at doses that inhibited the challenge-induced production of LTB(4). A subconjunctival injection of LTB(4) at doses 1/10,000 or less than that required for histamine elicited ocular scratching in naïve mice. The LTB(4) receptor antagonist ONO-4057 inhibited the ragweed pollen challenge-induced ocular scratching at doses that suppressed LTB(4)-induced ocular scratching. In addition to histamine, LTB(4) is involved in the ocular itching of pollen allergy. H(1) receptor antagonists with an inhibitory effect on the action and/or production of LTB(4) may have more potent anti-pruritic activity than selective H(1) antagonists.


Subject(s)
Conjunctivitis, Allergic/immunology , Disease Models, Animal , Leukotriene B4/physiology , Allergens/immunology , Ambrosia , Animals , Conjunctivitis, Allergic/prevention & control , Glucocorticoids/pharmacology , Histamine/physiology , Histamine H1 Antagonists, Non-Sedating/pharmacology , Hydroxyurea/analogs & derivatives , Hydroxyurea/pharmacology , Immunoglobulin E/blood , Immunoglobulin G/blood , Immunosuppressive Agents/pharmacology , Injections, Intraocular , Injections, Subcutaneous , Lipoxygenase Inhibitors/pharmacology , Male , Mast Cells/immunology , Mice , Mice, Inbred ICR , Phenylpropionates , Pollen/immunology , Terfenadine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL