Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutr Res ; 122: 33-43, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141553

ABSTRACT

Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).


Subject(s)
Capsaicin/analogs & derivatives , Capsicum , Resistance Training , Male , Humans , Young Adult , Adult , Leptin/metabolism , Dietary Supplements , Appetite , Adiponectin , Adipose Tissue/metabolism , Body Composition , Muscle Strength , Double-Blind Method , Camphor/metabolism , Camphor/pharmacology , Menthol/metabolism , Menthol/pharmacology , Plant Extracts/pharmacology , Muscle, Skeletal
2.
Photobiomodul Photomed Laser Surg ; 38(12): 766-772, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33332232

ABSTRACT

Objective: To investigate the recovery of male water polo athletes applying full body photobiomodulation therapy (PBMT) regarding inflammation and muscle damage markers, testosterone and cortisol hormonal responses, heart rate variability (HRV), maximal voluntary contraction, and squat jump (SJ) after official water polo matches. Background: PBMT has been applied locally on specific muscle groups to induce faster recovery and improve the performance of athletes and nonathletes. However, many sports modalities require movement of the whole body, and a full body PBMT could be more adequate to irradiate large muscle areas homogeneously and faster. Methods: In a randomized, parallel, and double-blinded design, 13 athletes (whole team) aged 18 years attended the study and were allocated into two groups: PBMT (dose of 6.9 J/cm2, irradiance of 46.17 mW/cm2, 5 min irradiation) and placebo treatment. The study was conducted during the 2019 Brazilian under 20 water polo championship. All athletes were assessed by blood samples and neuromuscular evaluation. Immediately after each match, all athletes received PBMT (effective or placebo). Results: No significant interactions (raw values and percentage related to baseline) were observed for testosterone and cortisol, tumor necrosis factor-alpha, interleukin-6, creatine kinase concentration, maximal isometric voluntary contraction, SJ test, and HRV. Only an isolated interaction (decrease) was found for lactate dehydrogenase (LDH) response after the first match (p = 0.004, post-hoc p = 0.038). Conclusions: The parameters of the full body PBMT of this study did not induce faster recovery of inflammatory, muscle damage (excepting LDH), testosterone, cortisol, HRV, and neuromuscular responses during repeated days of water polo matches.


Subject(s)
Low-Level Light Therapy , Muscle, Skeletal , Water Sports , Athletes , Double-Blind Method , Humans , Male
3.
Cell Biochem Funct ; 33(6): 394-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26373608

ABSTRACT

We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1ß, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p < 0.01). Hypothalamic malate dehydrogenase activity was reduced when compared with control (p < 0.05). In addition, pro-inflammatory cytokine levels were unchanged. Therefore, our results demonstrate that doxorubicin leads to an impairment of \hypothalamic energy metabolism, but do not affect the inflammatory pathway. SIGNIFICANCE PARAGRAPH: The hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term.


Subject(s)
Doxorubicin/pharmacology , Energy Metabolism/drug effects , Hypothalamus/metabolism , Animals , Body Weight/drug effects , Cytokines/metabolism , Inflammation/metabolism , Malate Dehydrogenase/metabolism , Male , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL