Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Oxid Med Cell Longev ; 2019: 9679731, 2019.
Article in English | MEDLINE | ID: mdl-31073356

ABSTRACT

Ethnopharmacological Relevance. Penthorum chinense Pursh (Penthoraceae) is a traditional herbal plant that has been used in China for the treatment of jaundice, cholecystitis, edema, and infectious hepatitis. In addition, the Korea Medicinal Plant Dictionary states that Penthorum chinense Pursh can be used to treat contusions and skin bruises by improving blood flow. Recent studies have shown that Penthorum chinense Pursh ethanol extract (Pc-EE) exhibits strong antioxidant effects. In this study, we examined the effects of Pc-EE on UVB-induced or H2O2-induced oxidative stress, as well as its antimelanogenic properties. Cell viability, matrix metalloproteinase (MMP) expression, cyclooxygenease-2 (COX-2), and interleukin-6 (IL-6) expression and moisturizing factors were investigated in keratinocytes. Collagen synthesis induction was measured in HEK293T cells. For melanogenesis, the effects of Pc-EE on melanin content and tyrosinase activity were measured. Additionally, the antimelanogenic- and autophagy-inducing activities of Pc-EE were examined using immunoblotting and confocal microscopy. Pc-EE protected HaCaT cells against death from UVB irradiation- or H2O2-induced oxidative stress. Pc-EE increased the promoter activity of the type 1 procollagen gene Col1A1 and decreased the expression of MMPs, COX-2, IL-6, and hyaluronidase induced by UVB irradiation- or H2O2-induced oxidative stress. Pc-EE showed a strong antioxidant effect in the DPPH assay. In α-melanocyte-stimulating hormone- (α-MSH-) stimulated B16F10 cells, Pc-EE reduced melanin production, decreased tyrosinase expression and microphthalmia-associated transcription factor (MITF) protein levels, and decreased the phosphorylation levels of p38 and JNK. In HEK293T cells, Pc-EE promoted the expression of GFP-LC3B. In B16F10 cells, the LC3B and melanin contents were reduced by Pc-EE and were restored by the autophagy inhibitor 3-methyladenine (3-MA). These results suggest that Pc-EE can be used as a skin protection agent due to its antiapoptotic, antiaging, anti-inflammatory, and antimelanogenic properties.


Subject(s)
Antioxidants/pharmacology , Autophagy/drug effects , Ethanol/chemistry , Melanins/antagonists & inhibitors , Plant Extracts/pharmacology , Saxifragaceae/chemistry , Skin Aging/drug effects , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Autophagy/radiation effects , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Collagen/metabolism , Humans , Hydrogen Peroxide/toxicity , Inflammation/pathology , Melanoma, Experimental/pathology , Mice , Oxidation-Reduction , Signal Transduction/drug effects , Skin Aging/radiation effects , Ultraviolet Rays , alpha-MSH/pharmacology
2.
J Ginseng Res ; 42(3): 356-360, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29989028

ABSTRACT

The fermentation of medicinal herbs facilitated by microbes is assumed to exert promising therapeutic efficacy on the absorption, bioavailability, and pharmacological effects by speeding up the making or conversion of active constituents into their metabolites. We examined the cardioprotective potential of fermented ginseng, GBCK25, against high-fat diet (HFD)-induced metabolic and functional illnesses as following the essential analysis such as electrocardiographic parameters, alterations of body and organ weights, and echocardiographic studies. The results exhibited that body weights were significantly reduced and the gain of different organ weights were partly eased by GBCK25 treatment. Echocardiography results proposed the amelioration of heart function through normalized levels of left ventricle systolic pressure, ejection fraction, and fractional shortening. These outcomes deliver straight confirmation that GBCK25 could be a potential nutraceutical source for the relief of HFD-induced obesity mediated cardiac dysfunctions.

3.
Mediators Inflamm ; 2018: 9079527, 2018.
Article in English | MEDLINE | ID: mdl-29736153

ABSTRACT

Tabebuia avellanedae has been traditionally used as an herbal remedy to alleviate various diseases. However, the plant's pharmacological activity in allergic and inflammatory diseases and its underlying mechanism are not fully understood. Therefore, we investigated the pharmacological activity of Tabetri (T. avellanedae ethanol extract (Ta-EE)) in the pathogenesis of AD. Its underlying mechanism was explored using an AD mouse model and splenocytes isolated from this model. Ta-EE ameliorated the AD symptoms without any toxicity and protected the skin of 2,4-dinitrochlorobenzene- (DNCB-) induced AD mice from damage and epidermal thickness. Ta-EE reduced the secreted levels of allergic and proinflammatory cytokines, including histamine, immunoglobulin E (IgE), interleukin- (IL-) 4, and interferon-gamma (IFN-γ) in the DNCB-induced AD mice. Ta-EE suppressed the mRNA expression of T helper 2-specific cytokines, IL-4 and IL-5, and the proinflammatory cytokine IFN-γ in the atopic dermatitis skin lesions of AD mice. Moreover, Ta-EE suppressed the mRNA expression of IL-4, IL-5, IFN-γ, and another proinflammatory cytokine, IL-12, in the Con A-stimulated splenocytes. It also suppressed IL-12 and IFN-γ in the LPS-stimulated splenocytes. Taken together, these results suggest that Ta-EE protects against the development of AD through the inhibition of mRNA expression of T helper 2-specific cytokines and other proinflammatory cytokines.


Subject(s)
Dermatitis, Atopic/drug therapy , Plant Extracts/therapeutic use , Tabebuia/chemistry , Animals , Body Weight/drug effects , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene/toxicity , Enzyme-Linked Immunosorbent Assay , Ethanol/chemistry , Interferon-gamma/metabolism , Interleukin-4/metabolism , Interleukin-5/metabolism , Male , Mice , Plant Extracts/chemistry , Real-Time Polymerase Chain Reaction
4.
Pharm Biol ; 55(1): 2074-2082, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28832235

ABSTRACT

CONTEXT: Torilidis fructus, fruits of Torilis japonica Decadolle (Umbelliferae), is a medicinal herb traditionally used as a pesticide, an astrictive, or a medicine for various inflammatory diseases. OBJECTIVES: Due to the lack of pharmacological studies on this herbal medicine, we explored the inhibitory activity of torilidis fructus on the macrophage-mediated inflammatory response using its ethanol extract (Tf-EE). MATERIAL AND METHODS: The Griess assay and prostaglandin (PGE2) ELISA assay were conducted with Tf-EE (0-75 µg/mL) and LPS (1 µg/mL) treated RAW264.7 cells in cultured media. Tf-EE pretreated RAW264.7 cells were incubated with LPS for 6 h and semi-quantitative PCR was performed. Reporter gene assays, overexpression of target enzymes and immunoblotting were performed on macrophages to determine the molecular targets of Tf-EE. RESULTS: Tf-EE markedly suppressed the inflammatory response of macrophages, such as lipopolysaccharide (LPS)-induced nitric oxide (NO) and PGE2 production with IC50 values of 35.66 and 62.47 µg/mL, respectively. It was also found that Tf-EE reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 by 80%. Nuclear translocation and activation of nuclear factor (NF)-κB (p65 and p50) were declined by 60% and 30% respectively, and their regulatory events including the phosphorylation of AKT, IκBα, Src, and the formation of complexes between Src and p-p85 were also recognized to be diminished. CONCLUSIONS: The signalling events managed by Src and p85 complex seemed to be critically involved in Tf-EE-mediated anti-inflammatory response. This might suggest that Tf-EE exhibited anti-inflammatory effects through Src-targeted inhibition of NF-κB.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Apiaceae , Plant Extracts/pharmacology , Protein Kinase Inhibitors/pharmacology , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Animals , Anti-Inflammatory Agents/isolation & purification , Dose-Response Relationship, Drug , Ethanol/pharmacology , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Plant Extracts/isolation & purification , Pregnancy , Protein Kinase Inhibitors/isolation & purification , RAW 264.7 Cells
5.
Article in English | MEDLINE | ID: mdl-28761499

ABSTRACT

Cordyceps militaris is used widely as a traditional medicine in East Asia. Although a few studies have attempted to elucidate the anticancer activities of C. militaris, the precise mechanism of C. militaris therapeutic effects is not fully understood. We examined the anticancer activities of C. militaris ethanolic extract (Cm-EE) and its cellular and molecular mechanisms. For this purpose, a xenograft mouse model bearing murine T cell lymphoma (RMA) cell-derived cancers was established to investigate in vivo anticancer mechanisms. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, immunoblotting analysis, and flow cytometric assay were employed to check in vitro cytotoxicity, molecular targets, and proapoptotic action of Cm-EE. Interestingly, cancer sizes and mass were reduced in a C. militaris-administered group. Levels of the phosphorylated forms of p85 and AKT were clearly decreased in the group administered with Cm-EE. This result indicated that levels of phosphoglycogen synthase kinase 3ß (p-GSK3ß) and cleaved caspase-3 were increased with orally administered Cm-EE. In addition, Cm-EE directly inhibited the viability of cultured RMA cells and C6 glioma cells. The number of proapoptotic cells was significantly increased in a Cm-EE treated group compared with a control group. Our results suggested that C. militaris might be able to inhibit cancer growth through regulation of p85/AKT-dependent or GSK3ß-related caspase-3-dependent apoptosis.

6.
Article in English | MEDLINE | ID: mdl-28811826

ABSTRACT

Piper attenuatum is used as a traditional medicinal plant in India. One of the substances in P. attenuatum has been suggested to have anti-inflammatory effects. However, there is insufficient research about the anti-inflammatory mechanisms of action of P. attenuatum. The effects of P. attenuatum methanol extract (Pa-ME) on the production of inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2), the expression of proinflammatory genes, the translocation level of transcription factors, and intracellular signaling activities were investigated using macrophages. Pa-ME suppressed the production of NO and PGE2 in lipopolysaccharide- (LPS-), pam3CSK4-, and poly(I:C)-stimulated RAW264.7 cells without displaying cytotoxicity. The mRNA expression levels of inducible NO synthase (iNOS) and cyclooxygenase 2 (COX-2) were decreased by Pa-ME. P-ME reduced the translocation of p50/NF-κB and AP-1 (c-Jun and c-Fos), as well as the activity of their upstream enzymes Src, Syk, and TAK1. Immunoprecipitation analysis showed failure of binding between their substrates, phospho- (p-) p85 and p-MKK3/6. p-p85 and p-MKK3/6, which were induced by overexpression of Src, Syk, and TAK1, were also reduced by Pa-ME. Therefore, these results suggest that Pa-ME exerts its anti-inflammatory effects by targeting Src and Syk in the NF-κB signaling pathway and TAK1 in the AP-1 signaling pathway.

7.
J Ginseng Res ; 41(3): 386-391, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28701882

ABSTRACT

BACKGROUND: Korean Red Ginseng (KRG) is an ethnopharmacological plant that is traditionally used to improve the body's immune functions and ameliorate the symptoms of various diseases. However, the antitumorigenic effects of KRG and its underlying molecular and cellular mechanisms are not fully understood in terms of its individual components. In this study, in vitro and in vivo antitumorigenic activities of KRG were explored in water extract (WE), saponin fraction (SF), and nonsaponin fraction (NSF). METHODS: In vitro antitumorigenic activities of WE, SF, and NSF of KRG were investigated in the C6 glioma cell line using cytotoxicity, migration, and proliferation assays. The underlying molecular mechanisms of KRG fractions were determined by examining the signaling cascades of apoptotic cell death by semiquantitative reverse transcriptase polymerase chain reaction and Western blot analysis. The in vivo antitumorigenic activities of WE, SF, and NSF were investigated in a xenograft mouse model. RESULTS: SF induced apoptotic death of C6 glioma cells and suppressed migration and proliferation of C6 glioma cells, whereas WE and NSF neither induced apoptosis nor suppressed migration of C6 glioma cells. SF downregulated the expression of the anti-apoptotic gene B-cell lymphoma-2 (Bcl-2) and upregulated the expression of the pro-apoptotic gene Bcl-2-associated X protein (BAX) in C6 glioma cells but had no effect on the expression of the p53 tumor-suppressor gene. Moreover, SF treatment resulted in activation of caspase-3 as evidenced by increased levels of cleaved caspase-3. Finally, WE, SF, and NSF exhibited in vivo antitumorigenic activities in the xenograft mouse model by suppressing the growth of grafted CT-26 carcinoma cells without decreasing the animal body weight. CONCLUSION: These results suggest that WE, SF, and NSF of KRG are able to suppress tumor growth via different molecular and cellular mechanisms, including induction of apoptosis and activation of immune cells.

8.
J Ethnopharmacol ; 206: 1-7, 2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28502904

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Nuclear factor-kappa B (NF-κB) plays pivotal roles in inflammation. Src and Syk are two tyrosine kinases that act upstream of NF-κB signaling. Although Achyranthes aspera L. (A. aspera) has been used as a traditional medicine to treat fevers and inflammatory ailments and heal wounds, the molecular mechanisms of its anti-inflammatory actions are not yet fully understood. MATERIALS AND METHODS: In this study, we evaluated the anti-inflammatory effect of A. aspera ethanol extract (Aa-EE). To determine the mechanism by which Aa-EE dampens the inflammatory response, nitric oxide (NO) production and the mRNA expression levels of tumor necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS) were examined by Griess assay and RT-PCR. Luciferase assays and immunoblotting were also conducted to examine how Aa-EE regulates the NF-κB pathway. RESULTS: Aa-EE reduced NO production up to 60% without any cytotoxicity. This extract was found to downregulate the mRNA expression levels of inflammatory genes. Aa-EE blocked NF-κB promoter activity induced by both TNF-α and adaptor molecule MyD88 (about 70% and 40%, respectively). Moreover, nuclear translocation of p65 and IκBα phosphorylation were also inhibited. Furthermore, Aa-EE inactivated two upstream signaling molecules, the Src and Syk kinases. In accordance with these data, the kinase activities of Src and Syk were decreased by 50% and 80%, respectively. The anti-inflammatory action of Aa-EE was also confirmed in a gastritis model. CONCLUSION: Our data suggest that Aa-EE targets NF-κB to exert its anti-inflammatory properties by suppressing Src and Syk. Therefore, our study raises the possibility that this extract can be developed as a novel natural anti-inflammatory remedy.


Subject(s)
Achyranthes/chemistry , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Syk Kinase/metabolism , src-Family Kinases/metabolism , Animals , Cell Line , Ethanol , Humans , Male , Mice , Mice, Inbred ICR
9.
Sci Rep ; 7: 42995, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216638

ABSTRACT

Thymoquinone (TQ) is a bioactive component of black seed (Nigella sativa) volatile oil and has been shown to have anti-oxidative, anti-inflammatory, and anti-cancer properties. In the present study, we explored the molecular mechanisms that underlie the anti-inflammatory effect of TQ and its target proteins using lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 and human monocyte-like U937 cells, together with LPS/D-galactosamine (GalN)-induced acute hepatitis and HCl/EtOH-induced gastritis mouse models. TQ strongly inhibited the production of nitric oxide (NO) and repressed NO synthase (iNOS), tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, interleukin (IL)-6, and IL-1ß expression in LPS-activated RAW264.7 cells. Treatment of LPS/D-GalN-induced hepatitis and EtOH/HCl-induced gastritis mouse models with TQ significantly ameliorated disease symptoms. Using luciferase reporter gene assays, we also showed that the nuclear levels of transcription factors and phosphorylation patterns of signaling proteins, activator protein (AP)-1, and nuclear factor (NF)-κB pathways were all affected by TQ treatment. Finally, we used additional kinase and luciferase validation assays with interleukin-1 receptor-associated kinase 1 (IRAK1) to show that IRAK1 is directly suppressed by TQ treatment. Together, these findings strongly suggest that the anti-inflammatory actions of TQ are caused by suppression of IRAK-linked AP-1/NF-κB pathways.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Benzoquinones/pharmacology , Gastritis/drug therapy , Gene Expression Regulation/drug effects , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Nigella sativa/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Benzoquinones/chemistry , Benzoquinones/therapeutic use , Cell Line , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Gastritis/pathology , Gastritis/veterinary , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lipopolysaccharides/toxicity , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Nigella sativa/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , RAW 264.7 Cells , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
10.
Mediators Inflamm ; 2017: 3619879, 2017.
Article in English | MEDLINE | ID: mdl-29317792

ABSTRACT

Although osteoarthritis (OA), a degenerative joint disease characterized by the degradation of joint articular cartilage and subchondral bones, is generally regarded as a degenerative rather than inflammatory disease, recent studies have indicated the involvement of inflammation in OA pathogenesis. Tabebuia avellanedae has long been used to treat various diseases; however, its role in inflammatory response and the underlying molecular mechanisms remain poorly understood. In this study, the pharmacological effects of Tabetri (Tabebuia avellanedae ethanol extract (Ta-EE)) on OA pathogenesis induced by monoiodoacetate (MIA) and the underlying mechanisms were investigated using experiments with a rat model and in vitro cellular models. In the animal model, Ta-EE significantly ameliorated OA symptoms and reduced the serum levels of inflammatory mediators and proinflammatory cytokines without any toxicity. The anti-inflammatory activity of Ta-EE was further confirmed in a macrophage-like cell line (RAW264.7). Ta-EE dramatically suppressed the production and mRNA expressions of inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 cells without any cytotoxicity. Finally, the chondroprotective effect of Ta-EE was examined in a chondrosarcoma cell line (SW1353). Ta-EE markedly suppressed the mRNA expression of matrix metalloproteinase genes. The anti-inflammatory and chondroprotective activities of Ta-EE were attributed to the targeting of the nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) signaling pathways in macrophages and chondrocytes.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Osteoarthritis/drug therapy , Phytotherapy , Tabebuia , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Ethanol , Humans , Inflammation Mediators/metabolism , Iodoacetic Acid/toxicity , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Male , Mice , NF-kappa B/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/metabolism , Plant Extracts/therapeutic use , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription Factor AP-1/metabolism
11.
Int J Nanomedicine ; 10: 1977-83, 2015.
Article in English | MEDLINE | ID: mdl-25792831

ABSTRACT

A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2-4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1-4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 µg/mL.


Subject(s)
Anti-Bacterial Agents , Helianthus/chemistry , Metal Nanoparticles , Plant Extracts , Silver , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Cell Survival/drug effects , Cells, Cultured , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/toxicity , Ralstonia solanacearum/drug effects , Rats , Silver/chemistry , Silver/pharmacology , Silver/toxicity , Spleen/cytology , Xanthomonas axonopodis/drug effects
12.
Biochimie ; 111: 70-81, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25698613

ABSTRACT

Hydnocarpus alpina Wt. (Flacourtiaceae) (H. alpina) is a large tree traditionally used to treat leprosy; it also posses antidiabetic property. The present study was undertaken to isolate, characterize and to evaluate the antidiabetic effect of 2R, 3R taxifolin 3-O-rhamnoside. (rhamnoside) and its impact on carbohydrate metabolic key enzymes in control and streptozotocin (STZ)-induced diabetic rats. Diabetes mellitus was induced by a single intraperitoneal injection of streptozotocin (STZ) (40 mg/kg). Oral administration of rhamnoside for 21 days significantly reduced food intake, calorie intake, blood glucose and glycosylated hemoglobin levels, and improved plasma insulin levels. Administration of rhamnoside showed significant increase in the body weight, body composition (Lean body weight (LBW) and retro body fat), glycolytic hexokinase, glucose-6-phophate dehydrogenase and pyruvate kinase levels where as significant decrease was observed in the levels of glucose-6-phosphatase fructose-1, 6-bisphosphatase and lactate dehydrogenase in diabetic treated rats. Further, administration of rhamnoside significantly improved the glycogen content, glycogen synthase and glycogen phosphorylase, suggesting the antihyperglycemic potential of rhamnoside in diabetic rats. The results obtained were compared with glibenclamide a standard hypoglycaemic drug. Immunohistopathological study of pancreas revealed increased number of ß-cells and insulin granules in diabetes-induced rats after treatment with rhamnoside for 21 days. Furthermore, Co-administration of rhamnoside (50 mg/kg) with nifedipine (13.6 mg/kg), a Ca(2+)ion channel blocker, or nicorandil (6.8 mg/kg), an ATP-sensitive K(+) ion channel opener, reveals the insulin secretion property of rhamnoside via a K(+)-ATP channels dependent pathway in diabetic rats. In conclusion, rhamnoside normalized blood glucose, glycosylated hemoglobin, key hepatic enzymes and glycogen content by increasing insulin secretion via K(+)-ATP channels dependent signaling pathway. The results suggest that the rhamnoside from H. alpina could be used as a therapeutic agent to treat diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Liver/enzymology , Magnoliopsida/chemistry , Plant Extracts/chemistry , Acetates/chemistry , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/enzymology , Glucose/metabolism , Glycosides/chemistry , Glycosides/isolation & purification , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Liver/pathology , Male , Rats, Wistar
13.
Chem Biol Interact ; 224: 157-63, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25289771

ABSTRACT

Gastric ulcer is an illness that affects a great number of people worldwide. The goal of the present research was to assess the anti-ulcerogenic activity of nymphayol (NYM), isolated from Nymphaea stellata, against an ethanol-induced ulcer model in rats. Administration of ethanol elevates the levels of the ulcer index (UI) along with causing tremendous increases in lipid peroxidation and myeloperoxidase (MPO) and significant decreases in gastric mucus, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx), and prostaglandin E2 (PGE2). However, the NYM- (45 mg/kg) pretreated animals showed considerable increases in antioxidants, gastric mucus, and PGE2 level and significant decreases in UI, lipid peroxidation, and MPO level. Pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were increased and the level of interleukin-10 (IL-10), an anti-inflammatory cytokine, was decreased in ethanol-induced ulcerated animals, and these inequalities were amended by NYM pretreatment. Pro-apoptotic markers including caspase-8, caspase-9, and caspase-3 were decreased and Bcl-2, an anti-apoptotic marker, was increased through NYM pretreatment, as compared with the ethanol-induced ulcer group. Pretreatment with indomethacin, SC560, rofecoxib, and Nω-Nitro-L-arginine methyl ester (L-NAME) considerably prevented the ulcer protective activity of NYM (45 mg/kg), indicating the involvement of cyclooxygenase (COX) and nitric oxide synthase (NOS) in NYM-mediated gastroprotection against ethanol-induced ulcer. These outcomes suggest that the gastroprotective effect of NYM might be mediated by adjustment of inflammatory mediators and apoptotic markers and increasing antioxidants.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Apoptosis/drug effects , Flowers/chemistry , Nymphaea/chemistry , Phytosterols/pharmacology , Stomach Ulcer/prevention & control , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Dose-Response Relationship, Drug , Ethanol , Female , Male , Molecular Conformation , Phytosterols/chemistry , Phytosterols/isolation & purification , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL