Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Complementary Medicines
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Sci Rep ; 11(1): 15190, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34312457

ABSTRACT

Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.


Subject(s)
Crops, Agricultural/growth & development , Ecosystem , Farms , Insecta/physiology , Trees , Animals , Biodiversity , Crop Production/methods , Flowers , Forests , Malawi , Phaseolus/growth & development , Pollination , Symbiosis/physiology , Tanzania
2.
J Chem Ecol ; 45(10): 869-878, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31741191

ABSTRACT

Most plant species depend upon insect pollination services, including many cash and subsistence crops. Plants compete to attract those insects using visual cues and floral odor which pollinators associate with a reward. The cacao tree, Theobroma cacao, has a highly specialized floral morphology permitting pollination primarily by Ceratopogonid midges. However, these insects do not depend upon cacao flowers for their life cycle, and can use other sugar sources. To understand how floral cues mediate pollination in cacao we developed a method for rearing Ceratopogonidae through several complete lifecycles to provide material for bioassays. We carried out collection and analysis of cacao floral volatiles, and identified a bouquet made up exclusively of saturated and unsaturated, straight-chain hydrocarbons, which is unusual among floral odors. The most abundant components were tridecane, pentadecane, (Z)-7-pentadecene and (Z)-8-heptadecene with a heptadecadiene and heptadecatriene as minor components. We presented adult midges, Forcipomyia sp. (subgen. Forcipomyia), Culicoides paraensis and Dasyhelea borgmeieri, with natural and synthetic cacao flower odors in choice assays. Midges showed weak attraction to the complete natural floral odor in the assay, with no significant evidence of interspecific differences. This suggests that cacao floral volatiles play a role in pollinator behavior. Midges were not attracted to a synthetic blend of the above four major components of cacao flower odor, indicating that a more complete blend is required for attraction. Our findings indicate that cacao pollination is likely facilitated by the volatile blend released by flowers, and that the system involves a generalized odor response common to different species of Ceratopogonidae.


Subject(s)
Cacao/chemistry , Ceratopogonidae/physiology , Volatile Organic Compounds/chemistry , Animals , Cacao/metabolism , Ceratopogonidae/drug effects , Flowers/chemistry , Flowers/metabolism , Gas Chromatography-Mass Spectrometry , Pollen/chemistry , Pollen/metabolism , Pollination/drug effects , Smell , Volatile Organic Compounds/pharmacology
3.
Planta ; 250(1): 367-379, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31069523

ABSTRACT

MAIN CONCLUSION: This study provides first evidence of a thrips species pollinating Sambucus nigra and describes how interactions are driven by plant biochemical signalling and moderated by temporal changes in floral chemistry. The concept of flower-feeding thrips as pollinating insects in temperate regions is rarely considered as they are more frequently regarded to be destructive florivores feeding on pollen and surrounding plant tissue. Combining laboratory and field-based studies we examined interactions between Sambucus nigra (elderflower) and Thrips major within their native range to ascertain the role of thrips in the pollination of this species and to determine if floral chemicals mediated flower visits. If thrips provide a pollination service to S. nigra, then this will likely manifest in traits that attract the pollinating taxa at temporally critical points in floral development. T. major were highly abundant in inflorescences of S. nigra, entering flowers when stigmas were pollen-receptive and anthers were immature. When thrips were excluded from the inflorescences, fruit-set failed. Linalool was the major component of the inflorescence headspace with peak abundance coinciding with the highest number of adult thrips visiting flowers. Thrips were absent in buds and their numbers declined again in senescing flowers inversely correlating with the concentration of cyanogenic glycosides recorded in the floral tissue. Our data show that S. nigra floral chemistry mediates the behaviour of pollen-feeding thrips by attracting adults in high numbers to the flowers at pre-anthesis stage, while producing deterrent compounds prior to fruit development. Taking an integrative approach to studying thrips behaviour and floral biology we provide a new insight into the previously ambiguously defined pollination strategies of S. nigra and provide evidence suggesting that the relationship between T. major and S. nigra is mutualistic.


Subject(s)
Feeding Behavior , Sambucus nigra/chemistry , Signal Transduction , Thysanoptera/physiology , Volatile Organic Compounds/analysis , Animals , Female , Flowers/chemistry , Flowers/growth & development , Flowers/physiology , Inflorescence/chemistry , Inflorescence/growth & development , Inflorescence/physiology , Male , Pollen/chemistry , Pollen/growth & development , Pollen/physiology , Pollination , Reproduction , Sambucus nigra/growth & development , Sambucus nigra/physiology , Symbiosis , Volatile Organic Compounds/metabolism
4.
J Chem Ecol ; 40(8): 878-81, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24952086

ABSTRACT

Herbivory defence chemicals in plants can affect higher trophic levels such as predators and parasitoids, but the impact on pollinators has been overlooked. We show that defensive plant chemicals can damage pollinator fitness when expressed in pollen. Crop lupins (Lupinus species from Europe and South America) accumulate toxic quinolizidine alkaloids in vegetative tissues, conferring resistance to herbivorous pests such as aphids. We identified the alkaloid lupanine and its derivatives in lupin pollen, and then provided this compound at ecologically-relevant concentrations to queenless microcolonies of bumblebees (Bombus terrestris) in their pollen to determine how foraging on these crops may impact bee colony health and fitness. Fewer males were produced by microcolonies provided with lupanine-treated pollen and they were significantly smaller than controls. This impact on males was not linked to preference as workers willingly fed lupanine-treated pollen to larvae, even though it was deleterious to colony health. Agricultural systems comprising large monocultures of crops bred for herbivore resistance can expose generalist pollinators to deleterious levels of plant compounds, and the broader environmental impacts of crop resistance must thus be considered.


Subject(s)
Bees/drug effects , Bees/physiology , Food Chain , Genetic Fitness , Lupinus/chemistry , Sparteine/analogs & derivatives , Animals , Bees/genetics , Dose-Response Relationship, Drug , Female , Genetic Fitness/drug effects , Herbivory , Male , Pollen/chemistry , Random Allocation , Sparteine/toxicity
5.
PLoS One ; 5(12): e14287, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21170326

ABSTRACT

BACKGROUND: Flower colour is of great importance in various fields relating to floral biology and pollinator behaviour. However, subjective human judgements of flower colour may be inaccurate and are irrelevant to the ecology and vision of the flower's pollinators. For precise, detailed information about the colours of flowers, a full reflectance spectrum for the flower of interest should be used rather than relying on such human assessments. METHODOLOGY/PRINCIPAL FINDINGS: The Floral Reflectance Database (FReD) has been developed to make an extensive collection of such data available to researchers. It is freely available at http://www.reflectance.co.uk. The database allows users to download spectral reflectance data for flower species collected from all over the world. These could, for example, be used in modelling interactions between pollinator vision and plant signals, or analyses of flower colours in various habitats. The database contains functions for calculating flower colour loci according to widely-used models of bee colour space, reflectance graphs of the spectra and an option to search for flowers with similar colours in bee colour space. CONCLUSIONS/SIGNIFICANCE: The Floral Reflectance Database is a valuable new tool for researchers interested in the colours of flowers and their association with pollinator colour vision, containing raw spectral reflectance data for a large number of flower species.


Subject(s)
Flowers/physiology , Pollination/physiology , Animals , Bees/physiology , Color , Databases, Factual , Flowers/metabolism , Geography , Internet , Models, Biological , Plant Physiological Phenomena , Plants/metabolism , Pollen/metabolism , Software , User-Computer Interface
6.
Nature ; 442(7102): 525, 2006 Aug 03.
Article in English | MEDLINE | ID: mdl-16885975

ABSTRACT

Floral colour signals are used by pollinators as predictors of nutritional rewards, such as nectar. But as insect pollinators often need to invest energy to maintain their body temperature above the ambient temperature, floral heat might also be perceived as a reward. Here we show that bumblebees (Bombus terrestris) prefer to visit warmer flowers and that they can learn to use colour to predict floral temperature before landing. In what could be a widespread floral adaptation, plants may modulate their temperature to encourage pollinators to visit.


Subject(s)
Bees/physiology , Color , Flowers/physiology , Hot Temperature , Adaptation, Physiological/physiology , Animal Nutritional Physiological Phenomena , Animals , Cues , Discrimination Learning/physiology , Energy Metabolism , Food Preferences/physiology , Photic Stimulation , Pollen/physiology , Reward
SELECTION OF CITATIONS
SEARCH DETAIL