Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Int J Environ Health Res ; 33(12): 1289-1304, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37309736

ABSTRACT

Polychlorinated biphenyls (PCBs) were used in different industrial areas and banned due to their high toxicity. Aroclor 1254 (A1254), commercial PCB congener, accumulates in environment leading to high human exposure. A1254 may cause hepatotoxicity, metabolic and endocrine disorders. In our study, 3-week-old male rats were separated into 6 groups: C (0.15 mg/kg Se in diet); SeS (1 mg/kg Se in diet); SeD (0.05 mg/kg Se in diet); A1254 receiving groups (A; ASeS; ASeD) were given 10 mg/kg/day A1254 orally for last 15 days of feeding period with control, SeD or SeS diet, respectively, for 5 weeks. Histopathology, oxidant/antioxidant balance, apoptosis and cell cycle proteins (p53, p21) in liver were evaluated. Our results suggest that A1254 leads to changes in histology, oxidative stress and apoptosis. Selenium deficiency augments oxidative stress and apoptosis while selenium supplementation is partially protective. More mechanistic in vivo experiments are necessary for evaluation of hepatotoxicity of PCBs.


Subject(s)
Chemical and Drug Induced Liver Injury , Polychlorinated Biphenyls , Selenium , Humans , Rats , Male , Animals , Selenium/toxicity , Selenium/metabolism , Polychlorinated Biphenyls/toxicity
2.
Arh Hig Rada Toksikol ; 71(2): 110-120, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32975097

ABSTRACT

Aroclor 1254 (A1254), a mixture of polychlorinated biphenyls, exerts hepatic, renal, and reproductive toxicity in rodents. This study aimed to determine a protective role of selenium on histopathological changes, oxidative stress, and apoptosis caused by A1254 in rat kidney. It included a control group, which received regular diet containing 0.15 mg/kg Se (C), a Se-supplemented group (SeS) receiving 1 mg/kg Se, a Se-deficient group (SeD) receiving Se-deficient diet of ≤0.05 mg/kg Se, an A1254-treated group (A) receiving 10 mg/kg of Aroclor 1254 and regular diet, an A1254-treated group receiving Se-supplementation (ASeS), and an A1254-treated group receiving Se-deficient diet (ASeD). Treatments lasted 15 days. After 24 h of the last dose of A1254, the animals were decapitated under anaesthesia and their renal antioxidant enzyme activities, lipid peroxidation (LP), glutathione, protein oxidation, and total antioxidant capacity levels measured. Histopathological changes were evaluated by light and electron microscopy. Apoptosis was detected with the TUNEL assay. Kidney weights, CAT activities, and GSH levels decreased significantly in all A1254-treated groups. Renal atrophic changes and higher apoptotic cell counts were observed in the A and ASeD groups. Both groups also showed a significant drop in GPx1 activities (A - 34.92 % and ASeD - 86.46 %) and rise in LP (A - 30.45 % and ASeD - 20.44 %) vs control. In contrast, LP levels and apoptotic cell counts were significantly lower in the ASeS group vs the A group. Histopathological changes and renal apoptosis were particularly visible in the ASeD group. Our findings suggest that selenium supplementation provides partial protection against renal toxicity of Aroclor 1254.


Subject(s)
Selenium , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , /toxicity , Kidney/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Selenium/toxicity
3.
J Environ Pathol Toxicol Oncol ; 38(3): 253-270, 2019.
Article in English | MEDLINE | ID: mdl-31679312

ABSTRACT

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate. DEHP is highly used in PVC floorings and PVC windows and carpeting. The objective of this study was to determine sex hormone levels, oxidative stress parameters, selenium levels, DNA damage, and phthalate levels in plastics workers (n = 24, age = 20-58 years) working in the production of rubber mechanical goods and exposed to DEHP in workplace. The control group (n = 29, age = 25-54, all male) was selected from age-matched healthy adults. Antioxidant parameters and DNA damage were determined by spectrophotometry. Selenium levels were determined by atomic absorption spectroscopy. Plasma hormone levels were measured by chemiluminescence microparticle immunoassay. Plasma phthalate levels were determined by high-pressure liquid chromatography. Plastic workers had lower serum testosterone and free T4 levels and higher follicle-stimulating hormone levels vs. controls. Liver enzyme activities were markedly higher in workers vs. controls. There were also increases in plasma glutathione peroxidase levels and marked decreases in plasma selenium and erythrocyte total glutathione levels in plastics workers (P < 0.05 vs. control). Plasma 8-hydroxy-2'-deoxyguanosine levels were 14-fold higher in plastics workers than in controls. Plasma DEHP and mono(2-ethylhexyl)phthalate were also markedly higher in workers vs. controls. The results of this study show that occupational exposure to DEHP may lead to disturbances in sex hormones, increased liver problems, higher oxidative stress and DNA damage levels, and lower trace element concentrations in workers. More comprehensive and mechanistic studies with higher numbers of subjects are needed to show the unwanted effects of occupational exposure to DEHP.


Subject(s)
DNA Damage , Diethylhexyl Phthalate/analogs & derivatives , Diethylhexyl Phthalate/toxicity , Environmental Pollutants/toxicity , Occupational Exposure/adverse effects , Oxidative Stress/drug effects , Selenium/metabolism , Adult , Gonadal Steroid Hormones/metabolism , Humans , Male , Middle Aged , Turkey
4.
Environ Toxicol Pharmacol ; 43: 149-58, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26991849

ABSTRACT

Phthalates and bisphenol A (BPA) are endocrine disruting chemicals (EDCs) that are suggested to exert neurotoxic effects. This study aimed to determine plasma phthalates and BPA levels along with oxidant/antioxidant status in autistic children [n=51; including 12 children were diagnosed with "Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS)]. Plasma levels of BPA, di (2-ethylhexyl)-phthalate (DEHP) and its main metabolite mono (2-ethylhexyl)-phthalate (MEHP); thiobarbituric acid reactive substance (TBARS) and carbonyl groups; erythrocyte glutathione peroxidase (GPx1), thioredoxin reductase (TrxR), catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) activities and glutathione (GSH) and selenium levels were measured. Plasma BPA levels of children with PDD-NOS were significantly higher than both classic autistic children and controls (n=50). Carbonyl, selenium concentrations and GPx1, SOD and GR activities were higher (p<0.05); CAT activity was markedly lower in study group. BPA exposure might be associated with PDD-NOS. Intracellular imbalance between oxidant and antioxidant status might facilitate its neurotoxicity.


Subject(s)
Autistic Disorder/blood , Benzhydryl Compounds/blood , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Phenols/blood , Phthalic Acids/blood , Autistic Disorder/metabolism , Catalase/metabolism , Child , Humans , Selenium/metabolism , Superoxide Dismutase/metabolism , Thioredoxin-Disulfide Reductase/metabolism
5.
Pediatr Int ; 57(6): 1131-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25999034

ABSTRACT

BACKGROUND: Selenium is a trace element required for the functioning of the immune system. Neonatal sepsis is a serious condition leading to morbidity and mortality in neonates worldwide. The purpose of this study was to measure selenium and plasma selenoprotein P (SePP), selenoenzyme activity, and alterations in oxidant/antioxidant status with immune biomarkers in neonates with clinical (n = 27) and proven neonatal sepsis (n = 25). METHODS: Erythrocyte selenium and SePP; plasma lipid peroxidation (LP), protein oxidation and total antioxidant capacity and erythrocyte total glutathione (GSH) concentration; erythrocyte glutathione peroxidase (GPx), thioredoxin reductase (TrxR), catalase (CAT) and total superoxide dismutase (SOD) activity were measured spectrophotometrically/spectrofluorometrically. Plasma interleukin 2 and 6 were also measured. RESULTS: Erythrocyte selenium and SePP were markedly lower both in the clinical and proven sepsis groups versus control. Erythrocyte GPx activity was higher only in the clinical sepsis group. TrxR activity was markedly lower in proven sepsis. SOD activity and GSH were markedly higher both in clinical sepsis and in proven sepsis. CAT activity was significantly higher both in clinical sepsis and in proven sepsis. LP and protein oxidation were significantly higher in both of the sepsis groups. CONCLUSIONS: Both selenium-dependent and selenium-independent blood redox systems were altered in sepsis, suggesting that sepsis causes an imbalance between cellular antioxidant and oxidant states.


Subject(s)
Antioxidants/metabolism , Neonatal Sepsis/blood , Oxidants/blood , Oxidative Stress , Selenium/blood , Biomarkers/blood , Female , Follow-Up Studies , Humans , Infant, Newborn , Lipid Peroxidation , Male , Retrospective Studies , Time Factors
6.
Turk J Pediatr ; 55(3): 271-82, 2013.
Article in English | MEDLINE | ID: mdl-24217073

ABSTRACT

Selenium (Se) is an essential trace element, and it shows its biological functions within low molecular Se compounds and Se-containing proteins, known as "selenoproteins". Glutathione peroxidases (GPxs) and thioredoxin reductases (TrxRs) are the most important selenoproteins functioning as antioxidant enzymes. These enzymes protect the body from the endogenous products of cellular metabolism that have been implicated in DNA damage, mutagenesis, and carcinogenesis. H1N1 virus is a subtype of the influenza A virus and was an endemic in humans in 2009 and 2010. Taking into account the high incidence of Se deficiency and the high mortality and morbidity rates in H1N1 infection, this study was designed to investigate the plasma and erythrocyte Se levels, selenoenzyme activities and other oxidant/antioxidant parameters in H1N1-infected children during the 2009-2010 pandemic. We observed a significant increase in C-reactive protein levels (245%) and marked decreases in both plasma and erythrocyte Se levels (11%, both) and in GPx1 (45%), GPx3 (16%) and TrxR (30%) activities in H1N1-infected children compared to the control group. In addition, significant decreases were observed in erythrocyte catalase (CAT) (38%), total superoxide dismutase (SOD) (42%) and glutathione S-transferase (GST) (19%) activities and in erythrocyte total glutathione (GSH) (18%) and plasma GSH (10%) concentrations, while marked increases were observed in plasma lipid peroxidation levels (27%). However, we did not find a significant difference in selenoprotein P (SePP) levels between the groups. Our findings show that Se-dependent and -independent blood redox systems are down-regulated in H1N1 influenza. These findings emphasized the critical role of Se as an effective redox regulator and the importance of Se status in infections, particularly in H1N1 influenza.


Subject(s)
Antioxidants/metabolism , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Oxidants/blood , Selenium/blood , Selenoproteins/blood , Adolescent , Biomarkers/blood , Child , Child, Preschool , Chromatography, High Pressure Liquid , Female , Humans , Infant , Lipid Peroxidation , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL