Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35196785

ABSTRACT

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Subject(s)
Arabidopsis/growth & development , Polyphosphates/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Soil Microbiology , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , Arabidopsis/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genetic Variation , Indoleacetic Acids/metabolism , Phosphorus/metabolism , Phosphotransferases (Phosphate Group Acceptor)/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Phylogeny , Pseudomonas/classification , Pseudomonas/enzymology , Rhizosphere , Siderophores/biosynthesis , Soil/chemistry
2.
RNA Biol ; 15(12): 1433-1439, 2018.
Article in English | MEDLINE | ID: mdl-30474479

ABSTRACT

Cross-kingdom gene regulation by microRNAs (miRNAs) initiated a hot debate on the effective role of orally acquired plant miRNAs on human gene expression. It resulted in the expansion of gene regulation theories and role of plant miRNAs in cross-kingdom regulation of gene expression. This opened up the discussion that 'Whether we really get what we eat?' and 'Whether the orally acquired miRNAs really have a biologically important consequences after entering our digestive and circulatory system?' The reports of orally acquired plant miRNAs inside human alimentary canal have been a topic of discussion in the scientific community. The cross-kingdom gene regulations have raised our hopes to explore the exciting world of plant miRNAs as therapeutic potential and dietary supplements. However, there are reports which have raised concerns over any such cross-kingdom regulation and argued that technical flaws in the experiments might have led to such hypothesis. This review will give the complete understanding of exogenous application and cross-kingdom regulation of plant miRNAs on human health. Here, we provide update and discuss the consequences of plant miRNA mediated cross-kingdom gene regulation and possibilities for this exciting regulatory mechanism as an augmented therapy against various diseases.


Subject(s)
Diet Therapy , MicroRNAs/administration & dosage , Plants, Edible/genetics , RNA, Plant/administration & dosage , Animals , Diet Therapy/methods , Dietary Supplements , Gene Expression Regulation , Humans , Mammals/genetics , RNA Interference , RNA, Viral , Species Specificity
3.
Sci Rep ; 5: 18611, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26688389

ABSTRACT

Withania somnifera is one of the most valuable medicinal plants synthesizing secondary metabolites known as withanolides. Despite pharmaceutical importance, limited information is available about the biosynthesis of withanolides. Chemo-profiling of leaf and root tissues of Withania suggest differences in the content and/or nature of withanolides in different chemotypes. To identify genes involved in chemotype and/or tissue-specific withanolide biosynthesis, we established transcriptomes of leaf and root tissues of distinct chemotypes. Genes encoding enzymes for intermediate steps of terpenoid backbone biosynthesis with their alternatively spliced forms and paralogous have been identified. Analysis suggests differential expression of large number genes among leaf and root tissues of different chemotypes. Study also identified differentially expressing transcripts encoding cytochrome P450s, glycosyltransferases, methyltransferases and transcription factors which might be involved in chemodiversity in Withania. Virus induced gene silencing of the sterol ∆7-reductase (WsDWF5) involved in the synthesis of 24-methylene cholesterol, withanolide backbone, suggests role of this enzyme in biosynthesis of withanolides. Information generated, in this study, provides a rich resource for functional analysis of withanolide-specific genes to elucidate chemotype- as well as tissue-specific withanolide biosynthesis. This genomic resource will also help in development of new tools for functional genomics and breeding in Withania.


Subject(s)
Plants, Medicinal/genetics , Transcriptome/genetics , Withania/genetics , Withanolides/metabolism , Biosynthetic Pathways/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Glycosyltransferases/biosynthesis , Methyltransferases/biosynthesis , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Roots/enzymology , Plant Roots/genetics , Plants, Medicinal/metabolism , Transcription Factors/biosynthesis , Withania/metabolism
4.
BMC Bioinformatics ; 16: 120, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25888493

ABSTRACT

BACKGROUND: Sterol glycosyltransferases (SGTs) are ubiquitous but one of the most diverse group of enzymes of glycosyltransferases family. Members of this family modulate physical and chemical properties of secondary plant products important for various physiological processes. The role of SGTs has been demonstrated in the biosynthesis of pharmaceutically important molecules of medicinal plants like Withania somnifera. RESULTS: Analysis suggested conserved behaviour and high similarity in active sites of WsSGTs with other plant GTs. Substrate specificity of WsSGTs were analysed through docking performance of WsSGTs with different substrates (sterols and withanolides). Best docking results of WsSGTL1 in the form of stable enzyme-substrate complex having lowest binding energies were obtained with brassicasterol, transandrosteron and WsSGTL4 with solasodine, stigmasterol and 24-methylene cholesterol. CONCLUSION: This study reveals topological characters and conserved nature of two SGTs from W. somnifera (WsSGTs) i.e. WsSGTL1 and WsSGTL4. However, besides being ubiquitous in nature and with broad substrate specificity, difference between WsSGTL1 and WsSGTL4 is briefly described by difference in stability (binding energy) of enzyme-substrate complexes through comparative docking.


Subject(s)
Glycosyltransferases/metabolism , Molecular Docking Simulation , Sterols/metabolism , Withania/metabolism , Withanolides/metabolism , Amino Acid Sequence , Catalytic Domain , Glycosyltransferases/chemistry , Glycosyltransferases/classification , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid , Substrate Specificity , Withania/growth & development
5.
PLoS One ; 8(5): e62714, 2013.
Article in English | MEDLINE | ID: mdl-23667511

ABSTRACT

Withania somnifera is one of the most valuable medicinal plants used in Ayurvedic and other indigenous medicine systems due to bioactive molecules known as withanolides. As genomic information regarding this plant is very limited, little information is available about biosynthesis of withanolides. To facilitate the basic understanding about the withanolide biosynthesis pathways, we performed transcriptome sequencing for Withania leaf (101L) and root (101R) which specifically synthesize withaferin A and withanolide A, respectively. Pyrosequencing yielded 8,34,068 and 7,21,755 reads which got assembled into 89,548 and 1,14,814 unique sequences from 101L and 101R, respectively. A total of 47,885 (101L) and 54,123 (101R) could be annotated using TAIR10, NR, tomato and potato databases. Gene Ontology and KEGG analyses provided a detailed view of all the enzymes involved in withanolide backbone synthesis. Our analysis identified members of cytochrome P450, glycosyltransferase and methyltransferase gene families with unique presence or differential expression in leaf and root and might be involved in synthesis of tissue-specific withanolides. We also detected simple sequence repeats (SSRs) in transcriptome data for use in future genetic studies. Comprehensive sequence resource developed for Withania, in this study, will help to elucidate biosynthetic pathway for tissue-specific synthesis of secondary plant products in non-model plant organisms as well as will be helpful in developing strategies for enhanced biosynthesis of withanolides through biotechnological approaches.


Subject(s)
Biosynthetic Pathways/genetics , Plant Leaves/genetics , Plant Roots/genetics , Transcriptome/genetics , Withania/genetics , Withanolides/chemistry , Base Sequence , Gene Expression Profiling , Glycosyltransferases/genetics , High-Throughput Nucleotide Sequencing , Medicine, Ayurvedic , Methyltransferases/genetics , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Plant Leaves/metabolism , Plant Roots/metabolism , Withania/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL