Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Am J Phys Anthropol ; 149(4): 525-36, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23109240

ABSTRACT

The movement of humans into the Americas remains a major topic of debate among scientific disciplines. Central to this discussion is ascertaining the timing and migratory routes of the earliest colonizers, in addition to understanding their ancestry. Molecular studies have recently argued that the colonizing population was isolated from other Asian populations for an extended period before proceeding to colonize the Americas. This research has suggested that Beringia was the location of this "incubation," though archaeological and skeletal data have not yet supported this hypothesis. This study employs the remains of the five most complete North American male early Holocene skeletons to examine patterns of human morphology at the earliest observable time period. Stature, body mass, body breadth, and limb proportions are examined in the context of male skeletal samples representing the range of morphological variation in North America in the last two millennia of the Holocene. These are also compared with a global sample. Results indicate that early Holocene males have variable postcranial morphologies, but all share the common trait of wide bodies. This trait, which is retained in more recent indigenous North American groups, is associated with adaptations to cold climates. Peoples from the Americas exhibit wider bodies than other populations sampled globally. This pattern suggests the common ancestral population of all of these indigenous American groups had reduced morphological variation in this trait. Furthermore, this provides support for a single, possibly high latitude location for the genetic isolation of ancestors of the human colonizers of the Americas.


Subject(s)
Body Height , Indians, North American/history , Indians, North American/statistics & numerical data , Archaeology , Body Size , Bone and Bones/anatomy & histology , Databases, Factual , Extremities/anatomy & histology , History, Ancient , Humans , Male , Statistics, Nonparametric
2.
Am J Phys Anthropol ; 141(2): 190-207, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19591213

ABSTRACT

Stature estimation methods for adult indigenous humans from the Americas have generally relied on a limited number of regression equations. The available equations, however, are not broadly applicable to the diversity of the populations that lived in the New World prior to European colonization. Furthermore, some equations that have been used were originally derived from inappropriate reference samples, such as the "Mongoloid" group measured by Trotter and Gleser (Am J Phys Anthropol 16 [1958] 79-123). This study develops new stature estimation equations for long bones of the lower limb from a geographically diverse sample of North American archaeological sites. Statures were reconstructed from 967 skeletons from 75 archaeological sites using the revised Fully anatomical technique (Raxter et al., Am J Phys Anthropol 130 [2006] 374-384). Archaeological samples were grouped according to general body proportions, using relative tibia and femur length to stature as guides. On the basis of differences in these proportions, three broad groupings were identified: a high latitude "arctic" group, a general "temperate" group, and a Great Plains group. Sex-specific ordinary least squares regression formulae were developed based on femoral and tibial lengths for each of these groups. Comparisons of the new stature estimation equations with previously available equations were conducted using several archaeological test samples. In most cases, the new stature estimation equations are more precise than those previously available, and we recommend their use throughout most of North America. The equations developed by Genovés for Mesoamerican and US Southwest samples are a useful alternative for these regions. Applicability of the new equations to South American samples awaits further testing.


Subject(s)
Body Size/physiology , Fossils , Indians, North American/statistics & numerical data , Leg Bones/anatomy & histology , Models, Theoretical , Anthropometry/methods , Female , History, Ancient , History, Medieval , Humans , Least-Squares Analysis , Male , North America , Sex Factors
3.
Am J Phys Anthropol ; 137(2): 164-74, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18484628

ABSTRACT

Variation in limb proportions between prehistoric Jomon and Yayoi people of Japan are explored by this study. Jomon people were the descendents of Pleistocene nomads who migrated to the Japanese Islands around 30,000 yBP. Phenotypic and genotypic evidence indicates that Yayoi people were recent migrants to Japan from continental Northeast Asia who likely interbred with Jomon foragers. Limb proportions of Jomon and Yayoi people were compared using RMA regression and "Quick-Test" calculations to investigate relative variability between these two groups. Cluster and principal components analyses were performed on size-standardized limb lengths and used to compare Jomon and Yayoi people with other groups from various climatic zones. Elongated distal relative to proximal limb lengths were observed among Jomon compared to Yayoi people. Jomon limb proportions were similar to human groups from temperate/tropical climates at lower latitudes, while Yayoi limb proportions more closely resemble groups from colder climates at higher latitudes. Limb proportional similarities with groups from warmer environments among Jomon foragers likely reflect morphological changes following Pleistocene colonization of the Japanese Islands. Cold-derived limb proportions among the Yayoi people likely indicate retention of these traits following comparatively recent migrations to the Japanese Islands. Changes in limb proportions experienced by Jomon foragers and retention of cold-derived limb proportions among Yayoi people conform to previous findings that report changes in these proportions following long-standing evolution in a specific environment.


Subject(s)
Asian People/history , Extremities/anatomy & histology , Adaptation, Physiological , Anthropometry , Climate , Cluster Analysis , Female , History, Ancient , Humans , Japan , Male , Principal Component Analysis , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL