Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Biochem Biophys ; 270(2): 419-31, 1989 May 01.
Article in English | MEDLINE | ID: mdl-2650623

ABSTRACT

Rhodotorula mucilaginosa is an obligate aerobic yeast which contains a high concentration of carotenoid pigment. To test whether carotenoids are able to protect R. mucilaginosa against oxidative injury, yeast cells in liquid culture were incubated with duroquinone (DQ) (100 microM), a redox-cycling quinone known to generate intracellular O2-. or were grown in a hyperoxic atmosphere (80% O2) under conditions where carotenoid concentrations were altered either intracellularly or extracellularly. Neither of these oxidative challenges affected cell growth unless carotenogenesis was blocked by the addition of diphenylamine (50 microM). In the diphenylamine-treated nonpigmented cells, growth was completely inhibited by DQ and by hyperoxia. In normoxia, however, diphenylamine alone reduced growth by only 30%. The growth inhibition observed in diphenylamine-treated cells exposed to hyperoxia was primarily mycocidal rather than mycostatic since plating of these cells onto solid media revealed that only 25% of the cells were viable after 50 h of incubation when compared to plated control cells. Addition of 10 microM beta-carotene to diphenylamine-treated cells completely prevented the growth inhibition caused by either hyperoxia or DQ. Carotenoids, therefore, are able to prevent oxidant-induced cytotoxicity in R. mucilaginosa. Analysis of the absorption spectra of chloroform extracts of beta-carotene-supplemented cells showed that beta-carotene, not the endogenous carotenoid, torularhodin, was the major carotenoid present in these cells. Superoxide dismutase (SOD) activity in R. mucilaginosa was compared with that of another yeast, Saccharomyces cerevisiae by two methods: (i) activity staining of proteins separated by gel electrophoresis and (ii) measurement of inhibition of ferricytochrome c reduction. By these techniques, the R. mucilaginosa SOD activity had the characteristics of Mn-SOD. No Cu/ZnSOD activity was detected. Thus, the apparent absence of Cu/ZnSOD may make the antioxidant capability of endogenous carotenoids even more critical in preventing oxidative damage in R. mucilaginosa.


Subject(s)
Benzoquinones , Carotenoids/pharmacology , Mitosporic Fungi/drug effects , Rhodotorula/drug effects , Cell Cycle/drug effects , Diphenylamine/pharmacology , Oxidation-Reduction/drug effects , Oxygen/pharmacology , Oxygen Consumption , Quinones/pharmacology , Rhodotorula/enzymology , Rhodotorula/growth & development , Saccharomyces cerevisiae/drug effects , Spectrophotometry , Superoxide Dismutase/metabolism , beta Carotene
3.
J Cell Physiol ; 123(1): 33-8, 1985 Apr.
Article in English | MEDLINE | ID: mdl-3972910

ABSTRACT

Cultured bovine adrenocortical cells were previously shown to be functionally deficient in selenium and vitamin E when grown in medium supplemented with fetal bovine serum. In the present experiments, the lack of significant bioavailable amounts of selenium in the medium was demonstrated by the finding of only low levels of glutathione peroxidase in the cultured cells (0.008 U/mg protein compared with 0.045 U/mg protein in fresh adrenocortical tissue). When 20 nM selenium as selenite was added to the cultured adrenocortical cells, glutathione peroxidase activity increased continuously over 72 h, with a total increase of about eightfold over this period. Over the same time-course, the highest concentration of cumene hydroperoxide tolerated by the cells without cell death increased progressively from 10 microM to 50 microM. Addition of 1 microM alpha-tocopherol also increased the amount of cumene hydroperoxide tolerated to 50 microM. Cell death was measured by cloning efficiency after removal of cumene hydroperoxide. Addition of either selenium or alpha-tocopherol had little effect on the growth rate of the cells over six passages, even when residual vitamin E was removed from the serum by extraction with ether and residual low molecular weight selenium compounds were removed by dialysis. It is concluded that combined deficiency of selenium and vitamin E, at least in the presence of other components of fetal bovine serum, has little effect on the ability of the cells to survive under normal conditions, as evidenced by continued long-term proliferation. However, the low levels of glutathione peroxidase resulting from selenium deficiency cause an increase susceptibility to peroxide-mediated toxicity. The combined deficiency of selenium and vitamin E impairs the ability of cells to survive under adverse conditions, as well as altering mitochondrial functions, as previously demonstrated.


Subject(s)
Adrenal Cortex/drug effects , Benzene Derivatives/toxicity , Glutathione Peroxidase/metabolism , Selenium/pharmacology , Adrenal Cortex/enzymology , Animals , Cattle , Cell Division/drug effects , Cell Survival/drug effects , Cells, Cultured , Clone Cells/drug effects , Culture Media , Vitamin E/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL