Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Kidney Int Rep ; 8(8): 1496-1505, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37547514

ABSTRACT

Introduction: Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods: Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results: Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) µg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion: This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient.

2.
Arch Osteoporos ; 18(1): 83, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37338608

ABSTRACT

This study assessed whether vitamin K, given with oral bisphosphonate, calcium and/or vitamin D has an additive effect on fracture risk in post-menopausal women with osteoporosis. No difference in bone density or bone turnover was observed although vitamin K1 supplementation led to a modest effect on parameters of hip geometry. PURPOSE: Some clinical studies have suggested that vitamin K prevents bone loss and may improve fracture risk. The aim was to assess whether vitamin K supplementation has an additive effect on bone mineral density (BMD), hip geometry and bone turnover markers (BTMs) in post-menopausal women with osteoporosis (PMO) and sub-optimum vitamin K status receiving bisphosphonate, calcium and/or vitamin D treatment. METHODS: We conducted a trial in 105 women aged 68.7[12.3] years with PMO and serum vitamin K1 ≤ 0.4 µg/L. They were randomised to 3 treatment arms; vitamin K1 (1 mg/day) arm, vitamin K2 arm (MK-4; 45 mg/day) or placebo for 18 months. They were on oral bisphosphonate and calcium and/or vitamin D. We measured BMD by DXA, hip geometry parameters using hip structural analysis (HSA) software and BTMs. Vitamin K1 or MK-4 supplementation was each compared to placebo. Intention to treat (ITT) and per protocol (PP) analyses were performed. RESULTS: Changes in BMD at the total hip, femoral neck and lumbar spine and BTMs; CTX and P1NP did not differ significantly following either K1 or MK-4 supplementation compared to placebo. Following PP analysis and correction for covariates, there were significant differences in some of the HSA parameters at the intertrochanter (IT) and femoral shaft (FS): IT endocortical diameter (ED) (% change placebo:1.5 [4.1], K1 arm: -1.02 [5.07], p = 0.04), FS subperiosteal/outer diameter (OD) (placebo: 1.78 [5.3], K1 arm: 0.46 [2.23] p = 0.04), FS cross sectional area (CSA) (placebo:1.47 [4.09],K1 arm: -1.02[5.07], p = 0.03). CONCLUSION: The addition of vitamin K1 to oral bisphosphonate with calcium and/or vitamin D treatment in PMO has a modest effect on parameters of hip geometry. Further confirmatory studies are needed. TRIAL REGISTRATION: The study was registered at Clinicaltrial.gov:NCT01232647.


Subject(s)
Fractures, Bone , Osteoporosis, Postmenopausal , Female , Humans , Osteoporosis, Postmenopausal/drug therapy , Osteoporosis, Postmenopausal/prevention & control , Vitamin K/pharmacology , Vitamin K/therapeutic use , Diphosphonates/therapeutic use , Calcium/therapeutic use , Fractures, Bone/prevention & control , Fractures, Bone/drug therapy , Bone Density , Vitamins/therapeutic use , Vitamin D/therapeutic use , Vitamin K 1/pharmacology , Vitamin K 1/therapeutic use , Femur Neck , Calcium, Dietary/therapeutic use , Dietary Supplements
3.
BMC Nephrol ; 23(1): 268, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896969

ABSTRACT

BACKGROUND: Many people living with chronic kidney disease (CKD) are iron deficient, even though they may not be anaemic. The Iron and Muscle study aims to evaluate whether iron supplementation reduces symptoms of fatigue, improves muscle metabolism, and leads to enhanced exercise capacity and physical function. We report here the trial design and baseline characteristics. METHODS: This is a prospective, double-blind multicentre randomised controlled trial (RCT) including 75 non-dialysis stage 3-4 CKD patients with iron deficiency but without anaemia. Patients were randomly (1:1) assigned to either: i) intravenous iron therapy, or ii) placebo, with concurrent recruitment of eight CKD non-iron deficient participants and six healthy volunteers. The primary outcome of the study is the six-minute walk test (6MWT) distance between baseline and four-weeks. An additional exercise training programme for patients in both groups was initiated and completed between 4 and 12 weeks, to determine the effect of iron repletion compared to placebo treatment in the context of patients undertaking an exercise programme. Additional secondary outcomes include fatigue, physical function, muscle strength, muscle metabolism, quality of life, resting blood pressure, clinical chemistry, safety and harms associated with the iron therapy intervention and the exercise training intervention, and hospitalisations. All outcomes were conducted at baseline, 4, and 12 weeks, with a nested qualitative study, to investigate the experience of living with iron deficiency and intervention acceptability. The cohort have been recruited and baseline assessments undertaken. RESULTS: Seventy-five individuals were recruited. 44% of the randomised cohort were male, the mean (SD) age was 58 (14) years, and 56% were White. Body mass index was 31 (7) kg/m2; serum ferritin was 59 (45) µg/L, transferrin saturation was 22 (10) %, and haemoglobin was 125 (12) g/L at randomisation for the whole group. Estimated glomerular filtration rate was 35 (12) mL/min/1.73 m2 and the baseline 6MWT distance was 429 (174) m. CONCLUSION: The results from this study will address a substantial knowledge gap in the effects of intravenous iron therapy, and offer potential clinical treatment options, to improve exercise capacity, physical function, fatigue, and muscle metabolism, for non-dialysis patients with CKD who are iron-deficient but not anaemic. It will also offer insight into the potential novel effects of an 8-week exercise training programme. TRIAL REGISTRATION: EudraCT: 2018-000,144-25 Registered 28/01/2019.


Subject(s)
Anemia , Iron Deficiencies , Renal Insufficiency, Chronic , Dietary Supplements , Double-Blind Method , Exercise Tolerance , Fatigue , Female , Humans , Male , Middle Aged , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Treatment Outcome
4.
J Rheumatol ; 34(9): 1905-12, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17696267

ABSTRACT

OBJECTIVE: Maintenance of good walking speed is essential to independent living. People with musculoskeletal disease often have reduced walking speed. We investigated determinants of slower walking, other than musculoskeletal disease, that might provide valuable additional targets for therapy. METHODS: We analyzed data from the Somerset and Avon Survey of Health, a community based survey of people aged over 35 years. A total of 2703 participants who reported hip or knee pain at baseline (1994/1995) were studied, and reassessed in 2002-2003; 1696 were available for followup, and walking speed was tested in 1074. Walking speed (m/s) was used as outcome measure. Baseline characteristics, including comorbidities and socioeconomic factors, were tested for their ability to predict reduced walking speed using multiple linear regression analysis. RESULTS: Age, female sex, and immobility at baseline were predictive of slower walking speed. Other independent risk factors included the presence of cataract, low socioeconomic status, intermittent claudication, and other cardiovascular conditions. Having a cataract was associated with a decrease of 0.10 m/s (95% CI 0.03, 0.16). Those in social class V had a walking speed 0.22 m/s (95% CI 0.126, 0.31) slower than those in social class I. CONCLUSION: Comorbidities, age, female sex, and lower socioeconomic position determine walking speed in people with joint pain. Issues such as poor vision and social-economic disadvantage may add to the effect of musculoskeletal disease, suggesting the need for a holistic approach to management of these patients.


Subject(s)
Arthralgia/complications , Musculoskeletal Diseases/complications , Walking , Adult , Age Factors , Aged , Aged, 80 and over , Cataract/complications , Exercise Test , Female , Follow-Up Studies , Geriatric Assessment , Hip Joint , Humans , Knee Joint , Male , Middle Aged , Pain Measurement , Prospective Studies , Sex Factors , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL