Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biometals ; 37(1): 23-70, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37914858

ABSTRACT

Researchers are swarming to nanotechnology because of its potentially game-changing applications in medicine, pharmaceuticals, and agriculture. This fast-growing, cutting-edge technology is trying different approaches for synthesizing nanoparticles of specific sizes and shapes. Nanoparticles (NPs) have been successfully synthesized using physical and chemical processes; there is an urgent demand to establish environmentally acceptable and sustainable ways for their synthesis. The green approach of nanoparticle synthesis has emerged as a simple, economical, sustainable, and eco-friendly method. In particular, phytoassisted plant extract synthesis is easy, reliable, and expeditious. Diverse phytochemicals present in the extract of various plant organs such as root, leaf, and flower are used as a source of reducing as well as stabilizing agents during production. Green synthesis is based on principles like prevention/minimization of waste, reduction of derivatives/pollution, and the use of safer (or non-toxic) solvent/auxiliaries as well as renewable feedstock. Being free of harsh operating conditions (high temperature and pressure), hazardous chemicals and the addition of external stabilizing or capping agents makes the nanoparticles produced using green synthesis methods particularly desirable. Different metallic nanomaterials are produced using phytoassisted synthesis methods, such as silver, zinc, gold, copper, titanium, magnesium, and silicon. Due to significant differences in physical and chemical properties between nanoparticles and their micro/macro counterparts, their characterization becomes essential. Various microscopic and spectroscopic techniques have been employed for conformational details of nanoparticles, like shape, size, dispersity, homogeneity, surface structure, and inter-particle interactions. UV-visible spectroscopy is used to examine the optical properties of NPs in solution. XRD analysis confirms the purity and phase of NPs and provides information about crystal size and symmetry. AFM, SEM, and TEM are employed for analyzing the morphological structure and particle size of NPs. The nature and kind of functional groups or bioactive compounds that might account for the reduction and stabilization of NPs are detected by FTIR analysis. The elemental composition of synthesized NPs is determined using EDS analysis. Nanoparticles synthesized by green methods have broad applications and serve as antibacterial and antifungal agents. Various metal and metal oxide NPs such as Silver (Ag), copper (Cu), gold (Au), silicon dioxide (SiO2), zinc oxide (ZnO), titanium dioxide (TiO2), copper oxide (CuO), etc. have been proven to have a positive effect on plant growth and development. They play a potentially important role in the germination of seeds, plant growth, flowering, photosynthesis, and plant yield. The present review highlights the pathways of phytosynthesis of nanoparticles, various techniques used for their characterization, and their possible roles in the physiology of plants.


Subject(s)
Metal Nanoparticles , Nanoparticles , Silver/chemistry , Copper/chemistry , Silicon Dioxide , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Plants/chemistry , Gold/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Curr Pharm Biotechnol ; 22(15): 2019-2030, 2021.
Article in English | MEDLINE | ID: mdl-33463460

ABSTRACT

AIMS: Globally, scientists are working to find more efficient antimicrobial drugs to treat microbial infections and kill drug-resistant bacteria. BACKGROUND: Despite the availability of numerous antimicrobial drugs, bacterial infections still pose a serious threat to global health. A constant decline in the effectiveness of antibiotics owing to their repeated exposure as well as a short-lasting antimicrobial activity led to the demand for developing novel therapeutic agents capable of controlling microbial infections. OBJECTIVE: In this study, we report the antimicrobial activity of chemically synthesized silver nanoparticles (cAgNPs) augmented with ampicillin (amp) in order to increase antimicrobial response against Escherichia coli (gram -ve), Staphylococcus aureus (gram +ve) and Streptococcus mutans (gram +ve). METHODS: Nanostructure, colloidal stability, morphology and size of cAgNPs before and after functionalization were explored by UV-vis spectroscopy, FT-IR, zeta potential and TEM. The formation and functionalization of cAgNPs were confirmed from UV-vis spectroscopy and FT-IR patterns. From TEM, the average sizes of cAgNPs and cAgNP-amp were found to be 13 and 7.8 nm, respectively, and change in colloidal stability after augmentation was confirmed from zeta potential values. The antimicrobial efficacies of cAgNP-amp and cAgNPs against E. coli S. aureus and S. mutans were studied by determining Minimum Inhibitory Concentrations (MICs), zone of inhibition, assessment of viable and non-viable bacterial cells and quantitative assessment of biofilm. RESULTS & DISCUSSION: Our results revealed cAgNP-amp to be highly bactericidal compared to cAgNPs or amp alone. The nano-toxicity studies indicated cAgNP-amp to be less toxic compared to cAgNPs alone. CONCLUSION: This study manifested that cAgNPs show synergistic antimicrobial effects when they get functionalized with amp suggesting their application in curing long-term bacterial infections.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Ampicillin/pharmacology , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Silver , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
3.
Microb Pathog ; 123: 196-200, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30009970

ABSTRACT

Nanotechnology is a potential area that revolutionizes almost every sector of life and is predicted to become a major economic force in the near future. Recently, nanomaterials have received great attention for their properties at nanoscale regime and their applications in many areas primarily, agriculture and food sectors. The Nanomaterials are dispersed or solid particles, with a size range of 1-100 nm. In recent times, there has been an increased research work in this area to synthesize nanomaterials using various approaches. The use of natural biomolecules using 'green' approach play key role in the synthesis of nanomaterials having different shapes and sizes. Further this 'green synthesis' approach not only minimize the cost but also limit the need of hazardous chemicals and stimulates synthesis of greener, safe and environmentally friendly nanoparticles. The present review focus on studies based on the biosynthesis of nanoparticles using biomolecules such as plants, bacteria, fungi, etc. The text summarizes the recent work done globally by renowned researchers in area of biosynthesis of nanomaterials. It also discusses the potential applications of biologically mediated nanomaterials in the areas of agriculture and food and a critical evaluation of challenges within this field.


Subject(s)
Agriculture/methods , Food Industry/methods , Green Chemistry Technology/methods , Nanostructures/chemistry , Nanotechnology/methods , Antineoplastic Agents , Bacteria/metabolism , Biofilms , Biological Control Agents , Biosensing Techniques , Fertilizers , Fungi/metabolism , Herbicides , Nanocomposites , Particle Size , Plant Extracts , Plants/metabolism
4.
Sci Rep ; 7: 40685, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120857

ABSTRACT

Large-scale synthesis and release of nanomaterials in environment is a growing concern for human health and ecosystem. Therefore, we have investigated the cytotoxic and genotoxic potential of zinc oxide nanoparticles (ZnO-NPs), zinc oxide bulk (ZnO-Bulk), and zinc ions (Zn2+) in treated roots of Allium cepa, under hydroponic conditions. ZnO-NPs were characterized by UV-visible, XRD, FT-IR spectroscopy and TEM analyses. Bulbs of A. cepa exposed to ZnO-NPs (25.5 nm) for 12 h exhibited significant decrease (23 ± 8.7%) in % mitotic index and increase in chromosomal aberrations (18 ± 7.6%), in a dose-dependent manner. Transmission electron microcopy and FT-IR data suggested surface attachment, internalization and biomolecular intervention of ZnO-NPs in root cells, respectively. The levels of TBARS and antioxidant enzymes were found to be significantly greater in treated root cells vis-à-vis untreated control. Furthermore, dose-dependent increase in ROS production and alterations in ΔΨm were observed in treated roots. FT-IR analysis of root tissues demonstrated symmetric and asymmetric P=O stretching of >PO2- at 1240 cm-1 and stretching of C-O ribose at 1060 cm-1, suggestive of nuclear damage. Overall, the results elucidated A. cepa, as a good model for assessment of cytotoxicity and oxidative DNA damage with ZnO-NPs and Zn2+ in plants.


Subject(s)
DNA Damage/drug effects , Metal Nanoparticles/toxicity , Mitochondria/drug effects , Onions/drug effects , Onions/physiology , Oxidative Stress , Plant Roots/drug effects , Zinc Oxide/toxicity , Chromosome Aberrations/drug effects , Chromosomes, Plant , Ions/toxicity , Membrane Potential, Mitochondrial , Metal Nanoparticles/ultrastructure , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitosis/drug effects , Oxidation-Reduction , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared
5.
J Colloid Interface Sci ; 472: 145-56, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27031596

ABSTRACT

ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 µg/ml and 2300, 2700 µg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Aloe , Biofilms/drug effects , Escherichia coli/physiology , Escherichia coli Infections/drug therapy , Green Chemistry Technology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/physiology , Microbial Sensitivity Tests , Oxidation-Reduction , Plant Extracts/chemistry , Staphylococcal Infections/drug therapy , Staphylococcus aureus/physiology
6.
Radiat Prot Dosimetry ; 155(4): 467-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23427204

ABSTRACT

Natural radioactivity in soil samples collected from different places of Bulandshahr, Hapur and Meerut city of Uttar Pradesh, India, using a low-level counting multichannel gamma-ray spectrometer system comprising an NaI(Tl) crystal. The range of (238)U, (232)Th and (40)K activity concentrations varied from 29.6 to 69.2, from 34.9 to 93.8 and from 438.2 to 719.9 , respectively. The activity concentrations of (232)Th are higher than those of (238)U in all the samples. The absorbed dose rate ranges from 53.18 to 110.95 . The values of the annual effective dose indoors are found to vary from 0.26 to 0.54 , whereas outdoors are found to vary from 0.07 to 0.14 . The annual effective dose is marginally below the international recommended value of 1 for the general public. The external and internal hazard indexes of the soil samples are below the recommended limits. The values of the gamma index in soil samples varied from 0.41 to 0.88. The values of the alpha index varied from 0.15 to 0.35. All these values of and are <1.0. It is observed from the results that there is no significant radiation hazard due to natural radionuclides of the soil samples in the studied areas.


Subject(s)
Gamma Rays , Radiation Monitoring/instrumentation , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma/methods , Air , Calibration , Cities , India , Industry , Potassium Radioisotopes/chemistry , Proportional Hazards Models , Radiation Monitoring/methods , Radiation Protection/methods , Radioisotopes/analysis , Radon , Risk Assessment , Thorium/chemistry , Uranium/chemistry
7.
World J Microbiol Biotechnol ; 28(4): 1605-13, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22805942

ABSTRACT

Staphylococcus aureus, particularly methicillin-resistant S. aureus (MRSA), is an important cause of pyogenic skin and soft tissue infections (SSTIs). MRSA is an important pathogen in the healthcare sector that has neither been eliminated from the hospital nor community environment. In humans, S. aureus causes superficial lesions in the skin and localized abscesses, pyogenic meningitis/encephalitis, osteomyelitis, septic arthritis, invasive endocarditis, pneumonia, urinary tract infections and septicemia. Investigations focused in the search of other alternatives for the treatment of MRSA infections are in progress. Among the range of compounds whose bactericidal activity is being investigated, ZnO nanoparticles (ZnO-NPs) appears most promising new unconventional antibacterial agent that could be helpful to confront this and other drug-resistant bacteria. The aim of present study is to investigate the antibacterial potential of ZnO-NPs against Staphylococcus species isolated from the pus and wounds swab from the patients with skin and soft tissue infections in a tertiary care hospital of north India. ZnO-NPs (≈19.82 nm) synthesized by sol-gel process were characterized using scanning electron microscopy, X-ray diffraction , and Atomic force microscopy. The antibacterial potential was assessed using time-dependent growth inhibition assay, well diffusion test, MIC and MBC test and colony forming units methods. ZnO-NPs inhibited bacterial growth of methicillin-sensitive S. aureus (MSSA), MRSA and methicillin-resistant S. epidermidis (MRSE) strains and were effective bactericidal agents that were not affected by drug-resistant mechanisms of MRSA and MRSE.


Subject(s)
Anti-Bacterial Agents/pharmacology , Nanoparticles/ultrastructure , Soft Tissue Infections/microbiology , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Zinc Oxide/pharmacology , Humans , India , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Staphylococcus aureus/isolation & purification , Staphylococcus epidermidis/isolation & purification , Suppuration/microbiology , Tertiary Care Centers , Wounds and Injuries/microbiology , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL