Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Nutr ; 125(9): 1017-1033, 2021 05 14.
Article in English | MEDLINE | ID: mdl-32498755

ABSTRACT

Ageing leads to a progressive loss of muscle function (MF) and quality (MQ: muscle strength (MS)/lean muscle mass (LM)). Power training and protein (PROT) supplementation have been proposed as efficient interventions to improve MF and MQ. Discrepancies between results appear to be mainly related to the type and/or dose of proteins used. The present study aimed at determining whether or not mixed power training (MPT) combined with fast-digested PROT (F-PROT) leads to greater improvements in MF and MQ in elderly men than MPT combined with slow-digested PROT (S-PROT) or MPT alone. Sixty elderly men (age 69 (sd 7) years; BMI 18-30 kg/m2) were randomised into three groups: (1) placebo + MPT (PLA; n 19); (2) F-PROT + MPT (n 21) and (3) S-PROT + MPT (n 20) completed the intervention. LM, handgrip and knee extensor MS and MQ, functional capacity, serum metabolic markers, skeletal muscle characteristics, dietary intake and total energy expenditure were measured. The interventions consisted in 12 weeks of MPT (3 times/week; 1 h/session) combined with a supplement (30 g:10 g per meal) of F-PROT (whey) or S-PROT (casein) or a placebo. No difference was observed among groups for age, BMI, number of steps and dietary intake pre- and post-intervention. All groups improved significantly their LM, lower limb MS/MQ, functional capacity, muscle characteristics and serum parameters following the MPT. Importantly, no difference between groups was observed following the MPT. Altogether, adding 30 g PROT/d to MPT, regardless of the type, does not provide additional benefits to MPT alone in older men ingesting an adequate (i.e. above RDA) amount of protein per d.


Subject(s)
Dietary Supplements , Milk Proteins/administration & dosage , Muscle Strength , Muscle, Skeletal/physiology , Resistance Training , Aged , Aging , Digestion , Hand Strength , Humans , Insulin Resistance , Male , Middle Aged , Muscle, Skeletal/anatomy & histology , Physical Functional Performance , Whey Proteins/administration & dosage
2.
Arch Phys Med Rehabil ; 81(8): 1090-8, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10943761

ABSTRACT

OBJECTIVE: To study the extent to which atrophy of muscle and progressive weakening of the long bones after spinal cord injury (SCI) can be reversed by functional electrical stimulation (FES) and resistance training. DESIGN: A within-subject, contralateral limb, and matching design. SETTING: Research laboratories in university settings. PARTICIPANTS: Fourteen patients with SCI (C5 to T5) and 14 control subjects volunteered for this study. INTERVENTIONS: The left quadriceps were stimulated to contract against an isokinetic load (resisted) while the right quadriceps contracted against gravity (unresisted) for 1 hour a day, 5 days a week, for 24 weeks. MAIN OUTCOME MEASURES: Bone mineral density (BMD) of the distal femur, proximal tibia, and mid-tibia obtained by dual energy x-ray absorptiometry, and torque (strength). RESULTS: Initially, the BMD of SCI subjects was lower than that of controls. After training, the distal femur and proximal tibia had recovered nearly 30% of the bone lost, compared with the controls. There was no difference in the mid-tibia or between the sides at any level. There was a large strength gain, with the rate of increase being substantially greater on the resisted side. CONCLUSION: Osteopenia of the distal femur and proximal tibia and the loss of strength of the quadriceps can be partly reversed by regular FES-assisted training.


Subject(s)
Bone Diseases, Metabolic/therapy , Electric Stimulation Therapy , Muscle, Skeletal/physiopathology , Spinal Cord Injuries/complications , Adult , Bone Density , Female , Femur/physiopathology , Humans , Male , Spinal Cord Injuries/physiopathology , Tibia/physiopathology
4.
Arch Phys Med Rehabil ; 74(9): 954-9, 1993 Sep.
Article in English | MEDLINE | ID: mdl-8379842

ABSTRACT

Simple systems for electrical stimulation (1-4 channels) with either surface, percutaneous, or implanted electrodes during locomotion were assessed in 10 subjects who had chronic, incomplete spinal cord injury (SCI). On average, the speed of locomotion was increased by 4 m/min independently of the subject's speed of locomotion without stimulation (0-50 m/min) while oxygen consumption was reduced somewhat. These simple systems can provide practical help, particularly for incomplete SCI subjects who can stand but are lacking or have very limited ability to walk. Further improvement in locomotion requires stabilization and reduction in the duration of the stance phase of locomotion.


Subject(s)
Electric Stimulation Therapy/methods , Locomotion , Spinal Cord Injuries/rehabilitation , Adult , Female , Gait , Humans , Male , Oxygen Consumption
5.
J Appl Physiol (1985) ; 72(4): 1393-400, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1317372

ABSTRACT

Muscle properties change profoundly as a result of disuse after spinal cord injury. To study the extent to which these changes can be reversed by electrical stimulation, tibialis anterior muscles in complete spinal cord-injured subjects were stimulated for progressively longer times (15 min, 45 min, 2 h, and 8 h/day) in 6-wk intervals. An index of muscle endurance to repetitive stimulation doubled (from 0.4 to 0.8), contraction and half-relaxation times increased markedly (from 70 to approximately 100 ms), but little or no change was measured in twitch or tetanic tension with increasing amounts of stimulation. The changes observed with 2 h/day of stimulation brought the physiological values close to those for normal (control) subjects. A decrease in the stimulation period produced a reversal of the changes. No effects were observed in the contralateral (unstimulated) muscle at any time, nor was there evidence of decreased numbers of motor units in these subjects secondary to spinal cord injury. Motor unit properties changed in parallel with those of the whole muscle. The occasional spasms occurring in these subjects are not sufficient to maintain normal muscle properties, but these properties can largely be restored by 1-2 h/day of electrical stimulation.


Subject(s)
Electric Stimulation Therapy/methods , Paralysis/therapy , Spinal Cord Injuries/therapy , Adaptation, Physiological , Adult , Fatigue/physiopathology , Female , Humans , Male , Motor Neurons/physiology , Muscle Contraction/physiology , Muscle Relaxation/physiology , Nerve Degeneration/physiology , Neuromuscular Junction/physiology , Paralysis/physiopathology , Spinal Cord Injuries/physiopathology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL