Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pestic Biochem Physiol ; 185: 105151, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35772840

ABSTRACT

The chemical composition of cypress, lavender, lemon eucalyptus, and tea tree oils has been investigated using gas chromatography/mass spectrometry (GC/MS). These oils were tested for larvicidal activity against Culex pipiens alongside their nanoemulsions (NEs) and conventional emulsifiable concentrates (ECs). Oil-in-water (O/W) NEs preparation was based on a high-energy ultra-sonication technique. The effect of independent variables of preparation on the different outputs was studied using the response surface method to obtain the optimum preparation technique. The droplet sizes of prepared NEs were significantly different (71.67, 104.55, 211.07, and 70.67 for cypress, lavender, lemon eucalyptus, and Tea tree NEs, respectively). The zeta potentials of NEs were recorded to have a high negatively charge (-28.4, -22.2, -23.6, and - 22.3 mV for cypress, lavender, lemon eucalyptus, and tea tree NEs, respectively). The results showed that the tea tree oil has the most significant effect with LC50 = 60.02 and 57.10 mg/L after 24 and 48 h of exposure, respectively. In comparison, cypress oil proved the lowest toxicity with LC50 values of 202.24 and 180.70 mg/L after 24 and 48 h, respectively. However, lavender oil does not show any effect against larvae at tested concentrations. In addition, pure oil exhibited the lowest larvicidal activity. However, the EC of all tested insecticides slightly improved the toxic action against the larvae. While the NEs showed significantly high toxicity compared to the EO and EC. An in vivo assessment of acetylcholine esterase (AChE), adenosine triphosphatase (ATPase), and gamma-aminobutyric acid transaminase (GABA-T) revealed that the NEs exhibited higher activity than the pure oils and ECs. This work describes these oils with potential use against C. pipiens larvae as eco-friendly products.


Subject(s)
Culex , Insecticides , Oils, Volatile , Animals , Insecticides/chemistry , Insecticides/pharmacology , Larva , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Tea
2.
J Environ Sci Health B ; 52(12): 896-911, 2017 Dec 02.
Article in English | MEDLINE | ID: mdl-29111904

ABSTRACT

Nanoemulsions are particularly suitable as a platform in the development of delivery systems for lipophilic functional agents. Current research describes the formation of oil-in-water (O/W) diazinon nanoemulsions using synthetic and natural additives by adopting a high-energy (ultrasound) emulsification method. The diazinon nanoemulsions were spontaneously formed by adding dropwise a mixture of diazinon, solvent and co-solvent in an aqueous solution containing a surfactant (tween or lecithin) with continuous stirring. The nanoemulsions were then formed by ultra-sonication. The effects of three levels of active ingredient, solvent, co-solvent, surfactant, sonication time and sonication cycle and power were performed by Minitab software to design the experiment. Effects of these factors on droplet size, polydispersity index (PDI), viscosity and pH of nanoemulsions were investigated. The results of the modeling showed that the experimental data could be adequately adapted in a second-order polynomial model with a multiple regression coefficient r2 of 0.821 for the prediction of particle size, PDI and viscosity. The long-term and thermodynamic stability of the prepared nanoemulsions were tested. The droplet size and morphology of the nanoemulsions were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). On this basis, a water-insoluble insecticide diazinon was incorporated into 26 optimized nanoemulsion systems to demonstrate potential applications in pest control. The results of DLS and TEM measurements showed that most of prepared nanoemulsions had an almost monodisperse droplet size distribution (PDI < 200 nm). Incorporation of diazinon had no significant effect on the size and stability of the nanoemulsions and the formulated nanoemulsion remained stable after four months of storage.


Subject(s)
Diazinon/chemistry , Emulsions/chemistry , Nanocomposites/chemistry , Dynamic Light Scattering , Hydrogen-Ion Concentration , Lecithins/chemistry , Microscopy, Electron, Transmission , Models, Chemical , Particle Size , Solvents/chemistry , Sonication , Surface-Active Agents/chemistry , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL