Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
BMC Plant Biol ; 24(1): 79, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287242

ABSTRACT

BACKGROUND: Guizhou Plateau, as one of the original centers of tea plant, has a profound multi-ethnic cultural heritage and abundant tea germplasm resources. However, the impact of indigenous community factors on the genetic diversity, population structure and geographical distribution of tea plant is still unclear. RESULTS: Using the genotyping-by-sequencing (GBS) approach, we collected 415 tea plant accessions from the study sites, estimated genetic diversity, developed a core collection, and conducted a genome-wide association study (GWAS) based on 99,363 high-quality single-nucleotide polymorphisms (SNPs). A total of 415 tea accessions were clustered into six populations (GP01, GP02, GP03, GP04, GP05 and GP06), and the results showed that GP04 and GP05 had the highest and lowest genetic diversity (Pi = 0.214 and Pi = 0.145, respectively). Moreover, 136 tea accessions (33%) were selected to construct the core set that can represent the genetic diversity of the whole collection. By analyzing seven significant SNP markers associated with the traits such as the germination period of one bud and two leaves (OTL) and the germination period of one bud and three leaves (OtL), four candidate genes possibly related to OTL and OtL were identified. CONCLUSIONS: This study revealed the impact of indigenous communities on the population structure of 415 tea accessions, indicating the importance of cultural practices for protection and utilization of tea plant genetic resources. Four potential candidate genes associated with the OTL and OtL of tea plant were also identified, which will facilitate genetic research, germplasm conservation, and breeding.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Plant Breeding , Phenotype , Tea , Polymorphism, Single Nucleotide
2.
BMC Plant Biol ; 23(1): 255, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37189087

ABSTRACT

BACKGROUND: Tea, the second largest consumer beverage in the world after water, is widely cultivated in tropical and subtropical areas. However, the effect of environmental factors on the distribution of wild tea plants is unclear. RESULTS: A total of 159 wild tea plants were collected from different altitudes and geological types of the Guizhou Plateau. Using the genotyping-by-sequencing method, 98,241 high-quality single nucleotide polymorphisms were identified. Genetic diversity, population structure analysis, principal component analysis, phylogenetic analysis, and linkage disequilibrium were performed. The genetic diversity of the wild tea plant population from the Silicate Rock Classes of Camellia gymnogyna was higher than that from the Carbonate Rock Classes of Camellia tachangensis. In addition, the genetic diversity of wild tea plants from the second altitude gradient was significantly higher than that of wild tea plants from the third and first altitude gradients. Two inferred pure groups (GP01 and GP02) and one inferred admixture group (GP03) were identified by population structure analysis and were verified by principal component and phylogenetic analyses. The highest differentiation coefficients were determined for GP01 vs. GP02, while the lowest differentiation coefficients were determined for GP01 vs. GP03. CONCLUSIONS: This study revealed the genetic diversity and geographical distribution characteristics of wild tea plants in the Guizhou Plateau. There are significant differences in genetic diversity and evolutionary direction between Camellia tachangensis with Carbonate Rock Classes at the first altitude gradient and Camellia gymnogyna with Silicate Rock Classes at the third altitude gradient. Geological environment, soil mineral element content, soil pH, and altitude markedly contributed to the genetic differentiation between Camellia tachangensis and Camellia gymnogyna.


Subject(s)
Camellia sinensis , Camellia , Phylogeny , Camellia sinensis/genetics , Camellia sinensis/chemistry , Camellia/genetics , Tea , Genetic Variation
3.
BMC Plant Biol ; 23(1): 196, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37046207

ABSTRACT

BACKGROUND: Studying the genetic characteristics of tea plant (Camellia spp.) leaf traits is essential for improving yield and quality through breeding and selection. Guizhou Plateau, an important part of the original center of tea plants, has rich genetic resources. However, few studies have explored the associations between tea plant leaf traits and single nucleotide polymorphism (SNP) markers in Guizhou. RESULTS: In this study, we used the genotyping-by-sequencing (GBS) method to identify 100,829 SNP markers from 338 accessions of tea germplasm in Guizhou Plateau, a region with rich genetic resources. We assessed population structure based on high-quality SNPs, constructed phylogenetic relationships, and performed genome-wide association studies (GWASs). Four inferred pure groups (G-I, G-II, G-III, and G-IV) and one inferred admixture group (G-V), were identified by a population structure analysis, and verified by principal component analyses and phylogenetic analyses. Through GWAS, we identified six candidate genes associated with four leaf traits, including mature leaf size, texture, color and shape. Specifically, two candidate genes, located on chromosomes 1 and 9, were significantly associated with mature leaf size, while two genes, located on chromosomes 8 and 11, were significantly associated with mature leaf texture. Additionally, two candidate genes, located on chromosomes 1 and 2 were identified as being associated with mature leaf color and mature leaf shape, respectively. We verified the expression level of two candidate genes was verified using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and designed a derived cleaved amplified polymorphism (dCAPS) marker that co-segregated with mature leaf size, which could be used for marker-assisted selection (MAS) breeding in Camellia sinensis. CONCLUSIONS: In the present study, by using GWAS approaches with the 338 tea accessions population in Guizhou, we revealed a list of SNPs markers and candidate genes that were significantly associated with four leaf traits. This work provides theoretical and practical basis for the genetic breeding of related traits in tea plant leaves.


Subject(s)
Camellia sinensis , Genome-Wide Association Study , Chromosome Mapping/methods , Camellia sinensis/genetics , Genotype , Phylogeny , Plant Breeding , Phenotype , Polymorphism, Single Nucleotide/genetics , Plant Leaves/genetics , Tea
4.
BMC Plant Biol ; 22(1): 55, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35086484

ABSTRACT

BACKGROUND: Tea plants originated in southwestern China. Guizhou Plateau is an original center of tea plants, and is rich in germplasm resources. However, the genetic diversity, population structure and distribution characteristics of cultivated-type tea plants in the region are unknown. In this study, we explored the genetic diversity and geographical distribution of cultivated-type tea accessions in Guizhou Plateau. RESULTS: We used 112,072 high-quality genotyping-by-sequencing to analyze the genetic diversity, principal components, phylogeny, population structure, and linkage disequilibrium, and develop a core collection of 253 cultivated-type tea plant accessions from Guizhou Plateau. The results showed Genetic diversity of the cultivated-type tea accessions of the Pearl River Basin was significantly higher than that of the cultivated-type tea accessions of the Yangtze River Basin. Three inferred pure groups (CG-1, CG-2 and CG-3) and one inferred admixture group (CG-4), were identified by a population structure analysis, and verified by principal component and phylogenetic analyses. The highest genetic distance and differentiation coefficients were determined for CG-2 vs CG-3. The lower genetic distance and differentiation coefficients were determined for CG-4 vs CG-2 and CG-4 vs CG-3, respectively. We developed a core set and a primary set. The primary and core sets contained 77.0 and 33.6% of all individuals in the initial set, respectively. The primary set may serve as the primary population in genome-wide association studies, while the core collection may serve as the core population in multiple treatment setting studies. CONCLUSIONS: The present study demonstrated the genetic diversity and geographical distribution characteristics of cultivated-type tea plants in Guizhou Plateau. Significant differences in genetic diversity and evolutionary direction were detected between the ancient landraces of the Pearl River Basin and the those of the Yangtze River Basin. Major rivers and ancient hubs were largely responsible for the genetic exchange between the Pearl River Basin and the Yangtze River Basin ancient landraces as well as the formation of the ancient hubs evolutionary group. Genetic diversity, population structure and core collection elucidated by this study will facilitate further genetic studies, germplasm protection, and breeding of tea plants.


Subject(s)
Camellia sinensis/genetics , Camellia sinensis/physiology , Genetic Variation , Agriculture , China , Demography , Gene Expression Regulation, Plant , Genotype , Humans
SELECTION OF CITATIONS
SEARCH DETAIL