Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Plant Biol ; 23(1): 307, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291504

ABSTRACT

BACKGROUND: Lavender (genus Lavandula, family Lamiaceae) is an aromatic plant widely grown as an ornamental plant. The chemical composition of lavender is characterized by monoterpenoids, sesquiterpenoids, and other compounds, which are primarily synthesized and stored in epidermal secretory structures called glandular trichomes (GTs). Volatile organic compounds (VOCs) are responsible for the aroma characteristics of plant oil that drive consumer preference. Aroma is usually regarded as a characteristic trait for the classification of aromatic plants. Interestingly, VOCs are synthesized and stored in GTs. Lamiaceae species such as purple perilla, peppermint, basil, thyme, and oregano usually possess two types of GTs: peltate glandular trichomes (PGTs) and capitate glandular trichomes (CGTs). But the development process of PGTs in lavender has been reported in only a few studies to date. RESULTS: In this study, we identified and quantified the VOCs in four lavender cultivars by headspace-solid phase micro extraction-gas chromatography mass spectrometry (HS-SPME-GC-MS). A total of 66 VOCs were identified in these four cultivars, the most prominent of which were linalyl acetate and linalool, and flowers were the main site of accumulation of these VOCs. Here, we examined the developmental process of PGTs, including the formation of their base, body, and apex. The apex cells contained secretory cavities, which produced VOCs. Based on the reference genome sequence of the lavender cultivar 'Jingxun 2', several R2R3-MYB subfamily genes related to GT formation were identified. These results will guide the engineering of GTs and molecular breeding of lavender for improving the VOC content. CONCLUSIONS: In this study, we identified the VOCs in four lavender cultivars. We analyzed the formation of GTs, and compared the number and diameter size of PGTs among four lavender cultivars. Additionally, we identified four candidate genes belonging to the R2R3-MYB family.


Subject(s)
Lavandula , Oils, Volatile , Terpenes , Lavandula/genetics , Oils, Volatile/analysis , Trichomes/chemistry , Plant Oils/chemistry
2.
BMC Plant Biol ; 19(1): 313, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31307374

ABSTRACT

BACKGROUND: Essential oils (EOs) of Lavandula angustifolia, mainly consist of monoterpenoids and sesquiterpenoids, are of great commercial value. The multi-flower spiciform thyrse of lavender not only determines the output of EOs but also reflects an environmental adaption strategy. With the flower development and blossom in turn, the fluctuation of the volatile terpenoids displayed a regular change at each axis. However, the molecular mechanism underlying the regulation of volatile terpenoids during the process of flowering is poorly understood in lavender. Here, we combine metabolite and RNA-Seq analyses of flowers of five developmental stages at first- and second-axis (FFDSFSA) and initial flower bud (FB0) to discover the active terpenoid biosynthesis as well as flowering-related genes. RESULTS: A total of 56 mono- and sesquiterpenoids were identified in the EOs of L. angustifolia 'JX-2'. FB0' EO consists of 55 compounds and the two highest compounds, ß-trans-ocimene (20.57%) and (+)-R-limonene (17.00%), can get rid of 74.71 and 78.41% aphids in Y-tube olfactometer experiments, respectively. With sequential and successive blossoms, temporally regulated volatiles were linked to pollinator attraction in field and olfaction bioassays. In three characteristic compounds of FFDSFSA' EOs, linalyl acetate (72.73%) and lavandulyl acetate (72.09%) attracted more bees than linalool (45.35%). Many transcripts related to flowering time and volatile terpenoid metabolism expressed differently during the flower development. Similar metabolic and transcriptomic profiles were observed when florets from the two axes were maintained at the same maturity grade. Besides both compounds and differentially expressed genes were rich in FB0, most volatile compounds were significantly correlated with FB0-specific gene module. Most key regulators related to flowering and terpenoid metabolism were interconnected in the subnetwork of FB0-specific module, suggesting the cross-talk between the two biological processes to some degree. CONCLUSIONS: Characteristic compounds and gene expression profile of FB0 exhibit ecological value in pest control. The precise control of each-axis flowering and regular emissions at transcriptional and metabolic level are important to pollinators attraction for lavender. Our study sheds new light on lavender maximizes its fitness from "gene-volatile terpenoid-insect" three layers.


Subject(s)
Flowers/genetics , Gene Regulatory Networks , Lavandula/genetics , Terpenes/metabolism , Acetates/metabolism , Animals , Ecosystem , Flowers/growth & development , Flowers/metabolism , Gene Expression Profiling , Insecta , Lavandula/growth & development , Lavandula/metabolism , Monoterpenes/metabolism , Odorants , Oils, Volatile/metabolism , Plant Oils/metabolism , Pollination , RNA, Plant , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL