Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Hyperthermia ; 30(3): 184-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24773040

ABSTRACT

Magnetic resonance thermometry (MRT) offers non-invasive temperature imaging and can greatly contribute to the effectiveness of head and neck hyperthermia. We therefore wish to redesign the HYPERcollar head and neck hyperthermia applicator for simultaneous radio frequency (RF) heating and magnetic resonance thermometry. In this work we tested the feasibility of this goal through an exploratory experiment, in which we used a minimally modified applicator prototype to heat a neck model phantom and used an MR scanner to measure its temperature distribution. We identified several distorting factors of our current applicator design and experimental methods to be addressed during development of a fully MR compatible applicator. To allow MR imaging of the electromagnetically shielded inside of the applicator, only the lower half of the HYPERcollar prototype was used. Two of its antennas radiated a microwave signal (150 W, 434 MHz) for 11 min into the phantom, creating a high gradient temperature profile (ΔTmax = 5.35 °C). Thermal distributions were measured sequentially, using drift corrected proton resonance frequency shift-based MRT. Measurement accuracy was assessed using optical probe thermometry and found to be about 0.4 °C (0.1-0.7 °C). Thermal distribution size and shape were verified by thermal simulations and found to have a good correlation (r(2 )= 0.76).


Subject(s)
Head and Neck Neoplasms/therapy , Hyperthermia, Induced , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Head and Neck Neoplasms/pathology , Humans , Protons
2.
Int J Hyperthermia ; 29(4): 346-57, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23672453

ABSTRACT

Abstract Clinical trials have shown that hyperthermia (HT), i.e. an increase of tissue temperature to 39-44 °C, significantly enhance radiotherapy and chemotherapy effectiveness [1]. Driven by the developments in computational techniques and computing power, personalised hyperthermia treatment planning (HTP) has matured and has become a powerful tool for optimising treatment quality. Electromagnetic, ultrasound, and thermal simulations using realistic clinical set-ups are now being performed to achieve patient-specific treatment optimisation. In addition, extensive studies aimed to properly implement novel HT tools and techniques, and to assess the quality of HT, are becoming more common. In this paper, we review the simulation tools and techniques developed for clinical hyperthermia, and evaluate their current status on the path from 'model' to 'clinic'. In addition, we illustrate the major techniques employed for validation and optimisation. HTP has become an essential tool for improvement, control, and assessment of HT treatment quality. As such, it plays a pivotal role in the quest to establish HT as an efficacious addition to multi-modality treatment of cancer.


Subject(s)
Hyperthermia, Induced , Models, Biological , Computer Simulation , Humans , Neoplasms/therapy
3.
Int J Hyperthermia ; 29(3): 181-93, 2013 May.
Article in English | MEDLINE | ID: mdl-23590361

ABSTRACT

BACKGROUND AND PURPOSE: In Rotterdam, patient-specific hyperthermia (HT) treatment planning (HTP) is applied for all deep head and neck (H&N) HT treatments. In this paper we introduce VEDO (the Visualisation Tool for Electromagnetic Dosimetry and Optimisation), the software tool required, and demonstrate its value for HTP-guided online complaint-adaptive (CA) steering based on specific absorption rate (SAR) optimisation during a H&N HT treatment. MATERIALS AND METHODS: VEDO integrates CA steering, visualisation of the SAR patterns and mean tumour SAR (SAR(target)) optimisation in a single screen. The pre-calculated electromagnetic fields are loaded into VEDO. During treatment, VEDO shows the SAR pattern, overlaid on the patients' CT-scan, corresponding to the actually applied power settings and it can (re-)optimise the SAR pattern to minimise SAR at regions where the patient senses discomfort while maintaining a high SAR(target). RESULTS: The potential of the quantitative SAR steering approach using VEDO is demonstrated by analysis of the first treatment in which VEDO was used for two patients using the HYPERcollar. These cases show that VEDO allows response to power-related complaints of the patient and to quantify the change in absolute SAR: increasing either SAR(target) from 96 to 178 W/kg (case 1); or show that the first SAR distribution was already optimum (case 2). CONCLUSION: This analysis shows that VEDO facilitates a quantitative treatment strategy allowing standardised application of HT by technicians of different HT centres, which will potentially lead to improved treatment quality and the possibility of tracking the effectiveness of different treatment strategies.


Subject(s)
Hyperthermia, Induced/methods , Software , Aged , Female , Head , Humans , Hyperthermia, Induced/instrumentation , Male , Middle Aged , Neck , Thyroid Neoplasms/therapy , Tongue Neoplasms/therapy
4.
Int J Hyperthermia ; 23(1): 59-67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17575724

ABSTRACT

PURPOSE: Investigation into the feasibility of a circular array of dipole antennas to deposit RF-energy centrally in the neck as a function of: (1) patient positioning, (2) antenna ring radius, (3) number of antenna rings, (4) number of antennas per ring and (5) distance between antenna rings. MATERIALS AND METHODS: Power absorption (PA) distributions in realistic, head and neck, anatomy models are calculated at 433 MHz. Relative PA distributions corresponding to different set-ups were analysed using the ratio of the average PA (aPA) in the target and neck region. RESULTS: Enlarging the antenna ring radius from 12.5 cm to 25 cm resulted in a approximately 21% decrease in aPA. By changing the orientation of the patients with respect to the array an increase by approximately 11% was obtained. Increase of the amount of antenna rings led to a better focussing of the power (1 --> 2/3: approximately 17%). Increase of the distance between the antenna rings resulted in a smaller (more target region conformal) focus but also a decreased power penetration. CONCLUSIONS: A single optimum array setup suitable for all patients is difficult to define. Based on the results and practical limitations a setup consisting of two rings of six antennas with a radius of 20 cm and 6 cm array spacing is considered a good choice providing the ability to heat the majority of patients.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Head/anatomy & histology , Hyperthermia, Induced , Models, Theoretical , Neck/anatomy & histology , Head/pathology , Head and Neck Neoplasms/pathology , Humans , Hyperthermia, Induced/instrumentation , Hyperthermia, Induced/methods , Neck/pathology
5.
Int J Radiat Oncol Biol Phys ; 68(2): 612-20, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17418965

ABSTRACT

PURPOSE: To experimentally verify the feasibility of focused heating in the neck region by an array of two rings of six electromagnetic antennas. We also measured the dynamic specific absorption rate (SAR) steering possibilities of this setup and compared these SAR patterns to simulations. METHODS AND MATERIALS: Using a specially constructed laboratory prototype head-and-neck applicator, including a neck-mimicking cylindrical muscle phantom, we performed SAR measurements by electric field, Schottky-diode sheet measurements and, using the power-pulse technique, by fiberoptic thermometry and infrared thermography. Using phase steering, we also steered the SAR distribution in radial and axial directions. All measured distributions were compared with the predictions by a finite-difference time-domain-based electromagnetic simulator. RESULTS: A central 50% iso-SAR focus of 35 +/- 3 mm in diameter and about 100 +/- 15 mm in length was obtained for all investigated settings. Furthermore, this SAR focus could be steered toward the desired location in the radial and axial directions with an accuracy of approximately 5 mm. The SAR distributions as measured by all three experimental methods were well predicted by the simulations. CONCLUSION: The results of our study have shown that focused heating in the neck is feasible and that this focus can be effectively steered in the radial and axial directions. For quality assurance measurements, we believe that the Schottky-diode sheet provides the best compromise among effort, speed, and accuracy, although a more specific and improved design is warranted.


Subject(s)
Electromagnetic Phenomena/instrumentation , Head and Neck Neoplasms/therapy , Hyperthermia, Induced/instrumentation , Algorithms , Equipment Design , Feasibility Studies , Phantoms, Imaging , Thermography/methods
SELECTION OF CITATIONS
SEARCH DETAIL