Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Publication year range
1.
Inorg Chem ; 62(36): 14615-14631, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37642721

ABSTRACT

Chelation therapy is a medical procedure for removing toxic metals from human organs and tissues and for the treatment of diseases by using metal-chelating agents. For example, iron chelation therapy is designed not only for the treatment of metal poisoning but also for some diseases that are induced by iron overload, cancer chemotherapy, and related diseases. However, the use of such metal chelators needs to be generally carried out very carefully, because of the side effects possibly due to the non-specific complexation with intracellular metal cations. Herein, we report on the preparation and characterization of some new poly(bpy) ligands (bpy: 2,2'-bipyridyl) that contain one-three bpy ligand moieties and their anticancer activity against Jurkat, MOLT-4, U937, HeLa S3, and A549 cell lines. The results of MTT assays revealed that the tris(bpy) and bis(bpy) ligands exhibit potent activity for inducing the cell death in cancer cells. Mechanistic studies suggest that the main pathway responsible for the cell death by these poly(bpy) ligands is apoptotic cell death. It was also found that the anticancer activity of the poly(bpy) ligands could be controlled by the complexation (anticancer activity is turned OFF) and decomplexation (anticancer activity is turned ON) with biorelevant metal cations. In this paper, these results will be described.


Subject(s)
2,2'-Dipyridyl , Neoplasms , Humans , Ligands , Cell Death , Metals , Chelating Agents , Cations/pharmacology , Poly A
2.
Nanomedicine ; 24: 102134, 2020 02.
Article in English | MEDLINE | ID: mdl-31830615

ABSTRACT

This study describes a sensitive reactive oxygen species (ROS)-responsive lecithin (LEC) incorporated iron oxide nanoparticle (Fe3O4 NP) system with potent anti-inflammatory properties and even more so when the antioxidant drug curcumin (CUR) is encapsulated in the PLGA hybrid magnetic microsphere system (Fe3O4@LEC-CUR-PLGA-MMS). The delivery system is responsive to ROS including an H2O2 environment to release the payload (CUR) drug. Greater cytotoxicity properties were observed in the presence of Fe3O4@LEC-CUR-PLGA-MMS against A549 and HeLa S3 cells with IC50 values after 24 h of 10 and 12 µg/mL and 10 and 20 µg/mL, respectively. The present Fe3O4@LEC-CUR-PLGA-MMS system demonstrated much better in vitro cytotoxicity, cellular morphological changes and moreover an ability to limit colony formation for A549 and HeLa S3 cancer cell lines than non-cancerous cells, and thus, should be further studied for a wide range of medical applications.


Subject(s)
Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , A549 Cells , Curcumin/administration & dosage , Curcumin/chemistry , Drug Delivery Systems/methods , HeLa Cells , Humans , Lecithins/chemistry , Microspheres , Reactive Oxygen Species/metabolism , Spectroscopy, Fourier Transform Infrared
3.
J Nat Prod ; 81(10): 2282-2291, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30303002

ABSTRACT

PANC-1 human pancreatic cancer cells are characterized by their ability to proliferate aggressively under hypovascular and hypoxic conditions in the tumor microenvironment, displaying a remarkable tolerance to nutrition starvation. The antiausterity strategy is a new approach in anticancer drug discovery aiming at the identification of potent agents that inhibit preferentially the survival of tumor cells during a limited supply of nutrients and oxygen. The new 5,8'-coupled naphthyldihydroisoquinoline alkaloid ancistrolikokine E3 (4), isolated from the Congolese liana Ancistrocladus likoko, showed potent preferential cytotoxicity against PANC-1 cells under nutrient-deprived conditions, with a PC50 value of 2.5 µM, without exhibiting toxicity in normal, nutrient-rich medium. The compound was found to induce dramatic alterations in cell morphology, leading to cell death. Moreover, it inhibited significantly PANC-1 cell migration and colony formation in a concentration-dependent manner. This study on 4 provides the first live evidence of the effect of a naphthyldihydroisoquinoline alkaloid against PANC-1 cells in nutrient-deprived medium. Mechanistic investigations conducted suggest that compound 4 is a potent inhibitor of the activation of the Akt/mTOR pathway. Furthermore, it inhibited the expression levels of the key autophagy regulators Atg5, Atg12, Beclin-1, LC3-I, and LC3-II. The results demonstrated that ancistrolikokine E3 (4) is a potent early-stage inhibitor of the autophagy pathway in PANC-1 human pancreatic cancer cells. Ancistrolikokine E3 (4) and related naphthylisoquinoline alkaloids are promising potential lead compounds for anticancer drug development based on the antiausterity strategy.


Subject(s)
Alkaloids/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Isoquinolines/pharmacology , Plants, Medicinal/chemistry , Signal Transduction/drug effects , Alkaloids/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Autophagy/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Congo , Humans , Isoquinolines/chemistry , Molecular Structure , Oncogene Protein v-akt/drug effects , Pancreatic Neoplasms/drug therapy , TOR Serine-Threonine Kinases/drug effects , Tumor Stem Cell Assay
4.
Bioorg Med Chem Lett ; 27(21): 4898-4903, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28947153

ABSTRACT

The chloroform extract of the Japanese cypress Chamaecyparis obtusa was found to kill PANC-1 human pancreatic cancer cells preferentially in the nutrient-deprived medium without causing toxicity in the nutrient rich condition. Phytochemical investigation on this extract led to the isolation of a new sesquiterpene (1), together with the six sesquiterpenes (2-7) and a lignan (8). The isolated compounds were tested for their preferential cytotoxicity activity against five different human pancreatic cancer cell lines [PANC-1, MIA PaCa2, CAPAN-1, PSN-1, and KLM-1] by utilizing an antiausterity strategy. Among them, α-cadinol (2) was identified as the most active constituent. α-Cadinol (2) was found to inhibit the activation of Akt/mTOR pathway, and the hyperactivation of autophagy leading to preferential PANC-1 cell death during nutrient-starvation.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Chamaecyparis/chemistry , Cyclodecanes/chemistry , Sesquiterpenes/chemistry , Terpenes/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Autophagy/drug effects , Cell Line, Tumor , Chamaecyparis/metabolism , Cyclodecanes/isolation & purification , Cyclodecanes/toxicity , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Magnetic Resonance Spectroscopy , Microscopy, Fluorescence , Molecular Conformation , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Sesquiterpenes/isolation & purification , Sesquiterpenes/toxicity , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Terpenes/isolation & purification , Terpenes/toxicity
5.
BMC Complement Altern Med ; 12: 242, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23206492

ABSTRACT

BACKGROUND: Couroupita guianensis Aubl. (Lecythidaceae) is commonly called Ayahuma and the Cannonball tree. It is distributed in the tropical regions of northern South America and Southern Caribbean. It has several medicinal properties. It is used to treat hypertension, tumours, pain, inflammatory processes, cold, stomach ache, skin diseases, malaria, wounds and toothache. METHODS: The fruits of Couroupita guianensis were extracted with chloroform. Antimicrobial, antimycobacterial and antibiofilm forming activities of the chloroform extract were investigated. Quantitative estimation of Indirubin, one of the major constituent, was identified by HPLC. RESULTS: Chloroform extract showed good antimicrobial and antibiofilm forming activities; however it showed low antimycobacterial activity. The zones of inhibition by chloroform extract ranged from 0 to 26 mm. Chloroform extract showed effective antibiofilm activity against Pseudomonas aeruginosa starting from 2 mg/mL BIC, with 52% inhibition of biofilm formation. When the chloroform extract was subjected to HPLC-DAD analysis, along with Indirubin standard, in the same chromatographic conditions, it was found that Indirubin was one of the major compounds in this plant (0.0918% dry weight basis). CONCLUSIONS: The chloroform extract showed good antimicrobial and antibiofilm properties. Chloroform extract can be evaluated further in drug development programmes.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Lecythidaceae/chemistry , Plant Extracts/pharmacology , Anti-Infective Agents/analysis , Anti-Infective Agents/isolation & purification , Bacteria/drug effects , Chromatography, High Pressure Liquid , Fruit/chemistry , Fungi/drug effects , Mycobacterium/drug effects , Plant Extracts/analysis , Plant Extracts/isolation & purification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL