Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Pediatr Endocrinol Metab ; 34(7): 951-955, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-33851526

ABSTRACT

OBJECTIVES: To describe the metabolic and endocrine features of a patient with Barth syndrome who showed evidence of growth hormone resistance. CASE PRESENTATION: A male proband deteriorated rapidly with lactic acidosis after a circumcision at age three weeks and was found to have severe dilated cardiomyopathy. A cardiomyopathy gene panel led to the diagnosis of TAZ-deficiency Barth syndrome. He subsequently experienced hypotonia and gross motor delay, feeding difficulties for the first four years, constitutional growth delay and one episode of ketotic hypoglycaemia. Cardiomyopathy resolved on oral anti-failure therapy by age three years. He had a hormonal pattern of growth hormone resistance, and growth hormone treatment was considered, however height velocity improved spontaneously after age 3½ years. He also had biochemical primary hypothyroidism. CONCLUSIONS: With careful metabolic management with l-arginine supplementation, overnight corn starch, and a prescribed exercise program, our patient's strength, endurance, level of physical activity and body composition improved significantly by age six years.


Subject(s)
Barth Syndrome/complications , Cardiomyopathy, Dilated/etiology , Growth Hormone/pharmacology , Arginine/administration & dosage , Body Height , Child , Humans , Male
2.
Hum Mutat ; 42(2): 135-141, 2021 02.
Article in English | MEDLINE | ID: mdl-33169484

ABSTRACT

COX16 is involved in the biogenesis of cytochrome-c-oxidase (complex IV), the terminal complex of the mitochondrial respiratory chain. We present the first report of two unrelated patients with the homozygous nonsense variant c.244C>T(p. Arg82*) in COX16 with hypertrophic cardiomyopathy, encephalopathy and severe fatal lactic acidosis, and isolated complex IV deficiency. The absence of COX16 protein expression leads to a complete loss of the holo-complex IV, as detected by Western blot in patient fibroblasts. Lentiviral transduction of patient fibroblasts with wild-type COX16 complementary DNA rescued complex IV biosynthesis. We hypothesize that COX16 could play a role in the copper delivery route of the COX2 module as part of the complex IV assembly. Our data provide clear evidence for the pathogenicity of the COX16 variant as a cause for the observed clinical features and the isolated complex IV deficiency in these two patients and that COX16 deficiency is a cause for mitochondrial disease.


Subject(s)
Acidosis, Lactic , Brain Diseases , Cardiomyopathies , Cytochrome-c Oxidase Deficiency , Liver Diseases , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Acidosis, Lactic/genetics , Cardiomyopathies/genetics , Cytochrome-c Oxidase Deficiency/genetics , Humans , Infant, Newborn , Mitochondrial Proteins/metabolism
3.
JIMD Rep ; 54(1): 9-15, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32685344

ABSTRACT

Pyridoxine-dependent epilepsy (PDE) is a potentially treatable vitamin-responsive epileptic encephalopathy. The most prevalent form of PDE is due to an underlying genetic defect in ALDH7A1 encoding Antiquitin (ATQ), an enzyme with α-aminoadipic semialdehyde dehydrogenase (AASADH) activity which facilitates cerebral lysine degradation. Devastating outcomes including intellectual disability and significant developmental delays are still observed in 75% to 80% of pyridoxine responsive individuals with good seizure control, potentially attributable to the accumulation of toxic intermediates α-aminoadipic semialdehyde (AASA) and its cyclic form Δ1-piperideine-6-carboxylate (P6C) in plasma, urine and CSF. Thus, adjunct treatment strategies incorporating lysine restriction and arginine supplementation, separately or in combination with pyridoxine have been attempted to enhance seizure control and improve cognitive function. We describe a 4 year old girl with classical PDE who demonstrated significant improvements in clinical, neurological and developmental outcomes including absence of clinical seizures and cessation of antiepileptic medications since age 3 months, normalisation of EEG, significant improvement in the white matter signal throughout the cerebrum on neuroimaging and significant reduction in urine P6C and pipecolic acid levels post- combined therapy with lysine restricted diet in conjunction with pyridoxine and folinic acid. Lysine restriction was well tolerated with impressive compliance and plasma lysine levels remained within the lower reference ranges; mean level 70 µmol/L (ref range 52-196 µmol/L). This case further emphasizes the benefit of early dietary intervention as an effective adjunct in the management of PDE.

4.
J Inherit Metab Dis ; 40(2): 261-269, 2017 03.
Article in English | MEDLINE | ID: mdl-27995398

ABSTRACT

SLC39A8 variants have recently been reported to cause a type II congenital disorder of glycosylation (CDG) in patients with intellectual disability and cerebellar atrophy. Here we report a novel SLC39A8 variant in siblings with features of Leigh-like mitochondrial disease. Two sisters born to consanguineous Lebanese parents had profound developmental delay, dystonia, seizures and failure to thrive. Brain MRI of both siblings identified bilateral basal ganglia hyperintensities on T2-weighted imaging and cerebral atrophy. CSF lactate was elevated in patient 1 and normal in patient 2. Respiratory chain enzymology was only performed on patient 1 and revealed complex IV and II + III activity was low in liver, with elevated complex I activity. Complex IV activity was borderline low in patient 1 muscle and pyruvate dehydrogenase activity was reduced. Whole genome sequencing identified a homozygous Chr4(GRCh37):g.103236869C>G; c.338G>C; p.(Cys113Ser) variant in SLC39A8, located in one of eight regions identified by homozygosity mapping. SLC39A8 encodes a manganese and zinc transporter which localises to the cell and mitochondrial membranes. Patient 2 blood and urine manganese levels were undetectably low. Transferrin electrophoresis of patient 2 serum revealed a type II CDG defect. Oral supplementation with galactose and uridine led to improvement of the transferrin isoform pattern within 14 days of treatment initiation. Oral manganese has only recently been added to the treatment. These results suggest SLC39A8 deficiency can cause both a type II CDG and Leigh-like syndrome, possibly via reduced activity of the manganese-dependent enzymes ß-galactosyltransferase and mitochondrial manganese superoxide dismutase.


Subject(s)
Cation Transport Proteins/genetics , Genetic Variation/genetics , Manganese/deficiency , Mitochondrial Diseases/genetics , Child , Congenital Disorders of Glycosylation/genetics , Female , Glycosylation , Humans , Infant , Leigh Disease/genetics
5.
Brain Dev ; 36(7): 593-600, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24055166

ABSTRACT

BACKGROUND: Lesch-Nyhan disease (LND) is a rare X-linked recessive neurogenetic disorder caused by deficiency of the purine salvage enzyme hypoxanthine phosphoribosyltransferase (HPRT, EC 2.4.2.8) which is responsible for recycling purine bases into purine nucleotides. Affected individuals have hyperuricemia leading to gout and urolithiasis, accompanied by a characteristic severe neurobehavioural phenotype with compulsive self-mutilation, extrapyramidal motor disturbances and cognitive impairment. AIM: For its theoretical therapeutic potential to replenish the brain purine nucleotide pool, oral supplementation with S-adenosylmethionine (SAMe) was trialed in 5 Malaysian children with LND, comprising 4 related Malay children from 2 families, including an LND girl, and a Chinese Malaysian boy. RESULTS: Dramatic reductions of self-injury and aggressive behaviour, as well as a milder reduction of dystonia, were observed in all 5 patients. Other LND neurological symptoms did not improve during SAMe therapy. DISCUSSION: Molecular mechanisms proposed for LND neuropathology include GTP depletion in the brain leading to impaired dopamine synthesis, dysfunction of G-protein-mediated signal transduction, and defective developmental programming of dopamine neurons. The improvement of our LND patients on SAMe, particularly the hallmark self-injurious behaviour, echoed clinical progress reported with another purine nucleotide depletion disorder, Arts Syndrome, but contrasted lack of benefit with the purine disorder adenylosuccinate lyase deficiency. This first report of a trial of SAMe therapy in LND children showed remarkably encouraging results that warrant larger studies.


Subject(s)
Lesch-Nyhan Syndrome/drug therapy , S-Adenosylmethionine/therapeutic use , Adolescent , Aggression/drug effects , Child , Child, Preschool , Dystonia/drug therapy , Female , Humans , Infant , Malaysia , Male , Pedigree , Purines/metabolism , Self-Injurious Behavior/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL