Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Appl Microbiol Biotechnol ; 107(14): 4459-4469, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266583

ABSTRACT

Diabetes is a chronic disease that affects several organs and can be treated using phytochemicals found in medicinal plants. Gymnema sylvestre (Asclepiadaceae) is one such medicinal plant rich in anti-diabetic properties. The plant is commonly known as madhunashini in Sanskrit because of its ability to cure diabetes (sugar). Gymnemic acid (GA) is a phytochemical (a triterpenoid saponin) responsible for the herb's main pharmacological activity. This secondary metabolite has a lot of potential as a phytochemical with pharmacological properties including nephroprotection, hypoglycemia, antioxidant, antimicrobial, and anti-inflammatory. Gymnema has acquired a lot of popularity in recent years due to its low side effects and high efficacy in healing diabetes, which has led to overexploitation by pharmaceutical enterprises for its biomass in the wild for the purification of gymnemic acid. Modern biotechnological techniques involving the establishment of cell and organ cultures from G. sylvestre will assist us in fulfilling the need for gymnemic acid production. The present review provides insights on the establishment of cell and organ cultures for the production of a potent antidiabetic molecule gymnemic acid. Further, the review also delves into the intricacies of the different strategies for improved production of gymnemic acid using various elicitors. There is huge potential for sustainable production of gymnemic acid which could be met by establishment of bioreactor scale production. Understanding and engineering the biosynthetic pathway could also lead to improved GA production. KEY POINTS: • Gymnemic acid is one of the potential anti-diabetic molecules from madhunashini • Cell and organ culture offers potential approach for gymnemic acid production • Elicitation strategies have improved the gymnemic acid production.


Subject(s)
Diabetes Mellitus , Gymnema sylvestre , Plants, Medicinal , Saponins , Triterpenes , Gymnema sylvestre/chemistry , Gymnema sylvestre/metabolism , Plants, Medicinal/chemistry , Plant Extracts/pharmacology , Saponins/metabolism , Diabetes Mellitus/drug therapy
2.
Front Plant Sci ; 13: 1047410, 2022.
Article in English | MEDLINE | ID: mdl-36733604

ABSTRACT

Medicinal plants, an important source of herbal medicine, are gaining more demand with the growing human needs in recent times. However, these medicinal plants have been recognized as one of the possible sources of heavy metal toxicity in humans as these medicinal plants are exposed to cadmium-rich soil and water because of extensive industrial and agricultural operations. Cadmium (Cd) is an extremely hazardous metal that has a deleterious impact on plant development and productivity. These plants uptake Cd by symplastic, apoplastic, or via specialized transporters such as HMA, MTPs, NRAMP, ZIP, and ZRT-IRT-like proteins. Cd exerts its effect by producing reactive oxygen species (ROS) and interfere with a range of metabolic and physiological pathways. Studies have shown that it has detrimental effects on various plant growth stages like germination, vegetative and reproductive stages by analyzing the anatomical, morphological and biochemical changes (changes in photosynthetic machinery and membrane permeability). Also, plants respond to Cd toxicity by using various enzymatic and non-enzymatic antioxidant systems. Furthermore, the ROS generated due to the heavy metal stress alters the genes that are actively involved in signal transduction. Thus, the biosynthetic pathway of the important secondary metabolite is altered thereby affecting the synthesis of secondary metabolites either by enhancing or suppressing the metabolite production. The present review discusses the abundance of Cd and its incorporation, accumulation and translocation by plants, phytotoxic implications, and morphological, physiological, biochemical and molecular responses of medicinal plants to Cd toxicity. It explains the Cd detoxification mechanisms exhibited by the medicinal plants and further discusses the omics and biotechnological strategies such as genetic engineering and gene editing CRISPR- Cas 9 approach to ameliorate the Cd stress.

SELECTION OF CITATIONS
SEARCH DETAIL