Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Craniofac Surg ; 29(1): 116-123, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29135730

ABSTRACT

Severe traumatic injuries often result in critical size bone defects, which are unable to heal without treatment. Autologous grafting is the standard of care but requires additional surgeries for graft procurement. Amnion-derived multipotent progenitor cells release a secretome of biomolecules identified as integral to the process of bone regeneration and angiogenesis. This secretome is currently under development as a biotherapeutic. The efficacy of this secretome biotherapeutic was evaluated in vitro on the proliferation and migration of mesenchymal stem cells and osteoprogenitor cells as well as in vivo using a critical size rat calvarial defect model. The secretome biotherapeutic was loaded onto a collagen scaffold and placed into the defect, which was allowed to heal for 4 and 12 weeks. The secretome biotherapeutic enhanced the proliferation and migration of mesenchymal stem cells and proliferation of osteoprogenitor cells. Further, the secretome biotherapeutic improved new bone volume and connectivity by 12 weeks and significantly improved angiogenesis at 4 weeks and bone density at 4 and 12 weeks with no deleterious effects. The improvement in new bone volume, connectivity, and angiogenesis suggests that the secretome biotherapeutic has beneficial effects for bone healing and a higher dose of the secretome biotherapeutic may further improve regeneration.


Subject(s)
Bone Regeneration/physiology , Culture Media, Conditioned/pharmacology , Fractures, Bone/therapy , Mesenchymal Stem Cells/physiology , Skull/injuries , Animals , Biological Therapy/methods , Disease Models, Animal , Guided Tissue Regeneration/methods , Rats , Trauma Severity Indices , Treatment Outcome
2.
Mol Genet Metab ; 78(2): 100-7, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12618081

ABSTRACT

Biotinidase deficiency is an autosomal recessive disorder of biotin metabolism caused by defects in the biotinidase gene. Symptoms of biotinidase deficiency are resolved or prevented with oral biotin supplementation and as such newborn screening is performed to prospectively identify affected individuals prior to the onset of symptoms. Biotinidase deficiency is detected by determining the activity of the biotinidase enzyme utilizing the newborn dried blood spot and colorimetric end point analysis. While newborn screening by enzyme analysis is effective, external factors may compromise results of the enzyme analysis and difficulty is encountered in distinguishing between complete and partial enzyme deficiencies. In the United States, the four mutations most commonly associated with complete biotinidase deficiency are c98:d7i3, Q456H, R538C, and the double mutation D444H:A171T. Partial biotinidase deficiency is almost universally attributed to the D444H mutation. To more effectively distinguish between profound and partial biotinidase deficiency, a panel of assays utilizing real time PCR and melting curve analysis using Light Cycler technology was developed. Employing DNA extracted from the original dried blood specimens from newborns identified through prospective newborn screening as presumptive positive for biotinidase deficiency, the specimens were analyzed for the presence of the five common mutations. Using this approach it was possible to separate newborns with partial and complete deficiency from each other as well as from many of those with false positive results. In most cases it was also possible to correlate the genotype with the degree of residual enzyme activity present. In newborn screening for biotinidase deficiency, we have shown that the analysis of common mutations is useful in distinguishing between partial and complete enzyme deficiency as well as improving specificity. Combining biotinidase enzyme analysis with genotypic data also increases the sensitivity of screening for biotinidase deficiency and provides information useful to clinicians earlier than would otherwise be possible.


Subject(s)
Amidohydrolases/genetics , Metabolism, Inborn Errors/diagnosis , Mutation , Polymerase Chain Reaction/methods , Base Sequence , Biotinidase , DNA Primers , Genotype , Humans , Infant, Newborn , Metabolism, Inborn Errors/enzymology , Metabolism, Inborn Errors/genetics , Neonatal Screening/methods , Nucleic Acid Hybridization , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL