Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139307

ABSTRACT

Plants contain a large number of small-molecule compounds that are useful for targeting human health and in drug discovery. Healthy bone metabolism depends on the balance between bone-forming osteoblast activity and bone-resorbing osteoclast activity. In an ongoing study searching for 22 plant extracts effective against osteoporosis, we found that the crude extract of Euptelea polyandra Sieb. et Zucc (E. polyandra) had osteogenic bioactivity. In this study, we isolated two compounds, isoquercitrin (1) and astragalin (2), responsible for osteogenic bioactivity in osteoblastic MC3T3-E1 cells from the leaf of E. polyandra using column chromatography and the spectroscopic technique. This is the first report to isolate astragalin from E. polyandra. Compounds (1) and (2) promoted osteoblast differentiation by increasing alkaline phosphatase (ALP) activity and alizarin red S stain-positive calcium deposition, while simultaneously suppressing tartrate-resistant acid phosphatase (TRAP)-positive osteoclast differentiation in RAW264.7 cells at non-cytotoxic concentrations. Isoquercitrin (1) and astragalin (2) increased the expression of osteoblastic differentiation genes, Osterix, ALP, and Osteoprotegerin in the MC3T3-E1 cells, while suppressing osteoclast differentiation genes, TRAP, Cathepsin K, and MMP 9 in the RAW264.7 cells. These compounds may be ideal targets for the treatment of osteoporosis due to their dual function of promoting bone formation and inhibiting bone resorption.


Subject(s)
Bone Resorption , Osteoporosis , Humans , Osteoclasts/metabolism , Osteogenesis , Osteoblasts/metabolism , Bone Resorption/metabolism , Cell Differentiation , Osteoporosis/drug therapy , Osteoporosis/metabolism
2.
Anticancer Res ; 43(8): 3429-3439, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500171

ABSTRACT

BACKGROUND/AIM: Hyperthermia (HT), combined with chemotherapy, has been used to treat various types of cancer. This study aimed to investigate the HT-sensitivity of malignant and non-malignant cells, and then evaluate the combination effect of docetaxel (DTX) and a newly synthesized chromone derivative (compound A) with HT. MATERIALS AND METHODS: The number of viable cells was determined using the MTT method. Cell cycle distribution was analyzed using a cell sorter, and DNA fragmentation pattern was detected using agarose gel electrophoresis. RESULTS: Among 12 cultured cells, oral squamous cell carcinoma (OSCC), especially Ca9-22 cells, and myelogenous leukemia cells showed higher sensitivity to HT than lung carcinoma and glioblastoma cell lines, while normal oral cells were the most resistant. Cytotoxicity of DTX on Ca9-22 cells was maximum at 41-42°C and 45~60 min exposure to HT. DXT, compound A, and HT induced G2/M arrest of Ca-22 cells. Mild HT enhanced the DTX- and compound A-induced subG1 arrest, in a synergistic fashion. CONCLUSION: The combination G2/M blockers and mild-HT can potentially be used for the treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Hyperthermia, Induced , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Apoptosis , Mouth Neoplasms/drug therapy , Docetaxel/pharmacology , Docetaxel/therapeutic use
3.
Front Oncol ; 11: 690878, 2021.
Article in English | MEDLINE | ID: mdl-34277435

ABSTRACT

Feiyanning formula (FYN) is a traditional Chinese medicine (TCM) prescription used for more than 20 years in the treatment of lung cancer. FYN is composed of Astragalus membranaceus, Polygonatum sibiricum, Atractylodes macrocephala, Cornus officinalis, Paris polyphylla, and Polistes olivaceous, etc. All of them have been proved to have anti-tumor effect. In this study, we used the TCM network pharmacological analysis to perform the collection of compound and disease target, the prediction of compound target and biological signal and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. It was found that the activation of mitochondrial pathway might be the molecular mechanism of the anti-lung cancer effect of FYN. The experimental results showed that FYN had an inhibitory effect on the growth of lung cancer cells in a dose-dependent and time-dependent manner. Moreover, FYN induced G2/M cell cycle arrest and apoptotic cell death as early as 6 h after treatment. In addition, FYN significantly induced mitochondrial membrane depolarization and increased calreticulin expression. Metabolomics analysis showed the increase of ATP utilization (assessed by a significant increase of the AMP/ATP and ADP/ATP ratio, necessary for apoptosis induction) and decrease of polyamines (that reflects growth potential). Taken together, our study suggested that FYN induced apoptosis of lung adenocarcinoma cells by promoting metabolism and changing the mitochondrial membrane potential, further supporting the validity of network pharmacological prediction.

4.
Anticancer Res ; 40(7): 3685-3696, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32620607

ABSTRACT

BACKGROUND/AIM: Although chemotherapy agents, such as oxaliplatin, cisplatin, paclitaxel and bortezomib frequently cause severe peripheral neuropathy, very few studies have reported the effective strategy to prevent this side effect. In this study, we first investigated whether these drugs show higher neuropathy compared to a set of 15 other anticancer drugs, and then whether antioxidants, such as sodium ascorbate, N-acetyl-L-cysteine, and vitamin B12 have any protective effect against them. MATERIALS AND METHODS: Rat PC12 cells were induced to differentiate into neuronal cells by repeated overlay of serum-free medium supplemented with nerve growth factor. The cytotoxic levels of anticancer drugs against four human oral squamous cell carcinoma cell lines, three normal oral cells, and undifferentiated and differentiated PC12 cells were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Cells were sorted for apoptotic cells (distributed into subG1 phase) and cells at different stages of cell cycle (G1, S and G2/M). RESULTS: All 19 anticancer drugs showed higher cytotoxicity against PC12 compared to oral normal cells. Among them, bortezomib showed the highest cytotoxicity against both undifferentiated and differentiated PC12 cell and, committed them to undergo apoptosis. Sodium ascorbate and N-acetyl-L-cysteine, but not vitamin B12, completely reversed the cytotoxicity of bortezomib. CONCLUSION: Bortezomib-induced neuropathy might be ameliorated by antioxidants.


Subject(s)
Antioxidants/pharmacology , Bortezomib/adverse effects , Neurotoxicity Syndromes/drug therapy , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bortezomib/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Humans , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Nerve Growth Factor/metabolism , Neurons/drug effects , Neurons/metabolism , Neurotoxicity Syndromes/metabolism , PC12 Cells , Peripheral Nervous System Diseases/metabolism , Rats
5.
Molecules ; 23(8)2018 Jul 24.
Article in English | MEDLINE | ID: mdl-30042342

ABSTRACT

Previous studies of the neuroprotective activity of polyphenols have used ununiform culture systems, making it difficult to compare their neuroprotective potency. We have established a new and simple method for preparing differentiated PC12 cells by removing the toxic coating step. Cells were induced to differentiate with the nerve growth factor (NGF) in a serum-free medium, without a medium change, but with a one-time overlay supplementation of NGF. The optimal inoculation density of the cells was 6⁻12 × 10³ cells/cm², and the presence of serum inhibited the differentiation. Neuroprotective activity could be quantified by the specific index (SI) value, that is, the ratio of the 50% cytotoxic concentration to the 50% effective concentration. Alkaline extract from the leaves of Sasa senanensis Rehder (SE), having had hormetic growth stimulation, showed the highest SI value, followed by epigallocatechin gallate. The SI value of curcumin and resveratrol was much lower. This simple overly method, that can prepare massive differentiated neuronal cells, may be applicable for the study of the differentiation-associated changes in intracellular metabolites, and the interaction between neuronal cells and physiological factors.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Cell Culture Techniques , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Sasa/chemistry , Taxoids/antagonists & inhibitors , Amyloid beta-Peptides/toxicity , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Differentiation/drug effects , Culture Media, Serum-Free/pharmacology , Curcumin/pharmacology , Hormesis , Nerve Growth Factor/pharmacology , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/isolation & purification , PC12 Cells , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Polyphenols/isolation & purification , Polyphenols/pharmacology , Rats , Resveratrol , Stilbenes/pharmacology , Taxoids/toxicity
6.
PLoS One ; 9(2): e87229, 2014.
Article in English | MEDLINE | ID: mdl-24504121

ABSTRACT

N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1ß and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.


Subject(s)
Acetylcysteine/pharmacology , Cytokines/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Interleukins/metabolism , Macrophages/drug effects , Macrophages/enzymology , Mice , Mitogen-Activated Protein Kinases/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Time Factors , Toll-Like Receptors/metabolism , Tumor Suppressor Protein p53/metabolism
7.
Free Radic Res ; 43(10): 922-31, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19680996

ABSTRACT

Dehydroepiandrosterone (DHEA), a reversible inhibitor of glucose-6-phosphate dehydrogenase (G6PD), is increasingly taken as an antioxidative and anti-ageing supplement. This study investigated the effects of DHEA on the expression of G6PD and on the state of oxidative stress in a human promyelocytic leukaemia cell line, HL60, during the differentiation to neutrophil-like cell. This study differentiated HL60 with dimethyl sulfoxide (DMSO) in the presence (DMSO-HL60/DHEA) or absence (DMSO-HL60) of DHEA. During the differentiation, activity, mRNA and protein levels of G6PD were increased. DHEA increased these levels further. DHEA by itself suppressed the production of superoxide from DMSO-HL60 upon stimulation with phorbol myristate acetate (PMA). However, DMSO-HL60/DHEA stimulated with PMA in the absence of DHEA produced superoxide and 8-oxo-deoxyguanosine more than PMA-stimulated DMSO-HL60. After addition of H(2)O(2), the ratio of reduced glutathione to oxidized glutathione was lower in DMSO-HL60/DHEA than in DMSO-HL60. These findings indicate that DHEA acts both as an antioxidant and as a pro-oxidant.


Subject(s)
Dehydroepiandrosterone/pharmacology , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Oxidative Stress/drug effects , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Growth Processes/drug effects , Cell Growth Processes/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dimethyl Sulfoxide/pharmacology , Glucosephosphate Dehydrogenase/biosynthesis , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase/metabolism , HL-60 Cells , Humans , NADPH Oxidases/metabolism , NADPH Oxidases/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL