Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Ethnopharmacol ; 323: 117589, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38104875

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Shou Tai Wan (STW), a traditional Chinese medicine formula, has been historically used for the treatment of recurrent spontaneous abortion (RSA). Despite its long-standing usage, the exact mechanism underlying the therapeutic effects of STW remains unclear in the existing literature. AIMS OF THIS STUDY: To explore the Pharmacological Mechanism of STW on RSA. METHODS: A network pharmacological methodology was utilized to predict the active compounds and potential targets of STW, collect the RSA targets and other human proteins of STW, and analyze the STW related networks. The animal experiments were also performed to validate the effect of STW on RSA. RESULTS: The results of network analysis showed that STW may regulate PI3K/AKT, MAPK, FoxO signaling pathways and so on. Animal experiment established the RSA model with CBA/J × DBA/2 mice. It was found that STW can reduce the embryo absorption rate of RSA group (p < 0.05) and balance the expression of Th 1/Th2 type cytokines compared with the model group. After 14 days of administration, the decidual and placental tissues were taken and the CD4+ T cells were isolated, and the phosphorylation level of signaling pathway was detected by Springbio720 antibody microarray. This experiment found that STW can significantly up-regulate the phosphorylation levels of STAT3 and STAT6 proteins in the STAT signaling pathway, and down-regulating the phosphorylation level of STAT1 protein. STW also significantly up-regulated the phosphorylation levels of Raf1, A-Raf, Ask1, Mek1, Mek2, JKK1, ERK1, ERK2, c-fos, c-Jun and CREB proteins in the MAPK signaling pathway, and down-regulate the phosphorylation levels of MEK6 and IKKb proteins. Compared with the RSA group, the STW group increased the expression levels of ERK1/2 mRNA and proteins and p-ERK1/2 proteins, and there was a statistical difference (p < 0.05). This is consistent with the chip results. CONCLUSION: STW may achieve therapeutic effects by interfering with the signaling pathways, biological processes and targets discovered in this study. It provides a new perspective for revealing the immunological mechanism of STW in the treatment of RSA, and also provides a theoretical basis for the clinical use of STW in the treatment of RSA.


Subject(s)
Abortion, Habitual , Phosphatidylinositol 3-Kinases , Mice , Animals , Pregnancy , Female , Humans , Placenta , Mice, Inbred DBA , Mice, Inbred CBA , Abortion, Habitual/drug therapy
2.
Biomed Pharmacother ; 168: 115544, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37820566

ABSTRACT

Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets ß Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 2 , Ferroptosis , Humans , Apoptosis , Cell Death , Diabetes Mellitus, Type 2/drug therapy
3.
Phytomedicine ; 112: 154707, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805483

ABSTRACT

BACKGROUND: Qimai Feiluoping decoction (QM), a Traditional Chinese Medicine formula, has been included in rehabilitation program for functional disorders of discharged COVID-19 patients. QM has been proved to effectively improve the clinical symptoms and imaging signs of PF in COVID-19 convalescent patients. PURPOSE: This study to explore the pharmacological effect of QM against PF from the perspectives of imaging, pathological staining, and molecular mechanisms, and identify possible active components. METHODS: Micro-CT imaging and immunohistochemical staining were investigated to verify the therapeutic effect of QM in the bleomycin (BLM)-induced PF mouse model. The 4D-label-free proteomics analysis of lung tissues was then conducted to explore the novel mechanisms of QM against PF, which were further validated by a series of experiments. The possible components of QM in plasma and lung tissues were identified with UHPLC/IM-QTOF-MS analysis. RESULTS: The results from micro-CT imaging and pathological staining revealed that QM treatment can inhibit BLM-induced lung injury, extracellular matrix accumulation and TGF-ß expression in the mouse model with PF. The 4D-label-free proteomics analysis demonstrated that the partial subunit proteins of mitochondrial complex I and complex II might be potential targets of QM against PF. Furthermore, QM treatment can inhibit BLM-induced mitochondrial ROS content to promote ATP production and decrease oxidative stress injury in the mouse and cell models of PF, which was mediated by the inhibition of mitochondrial complex I. Finally, a total of 13 protype compounds and 15 metabolites from QM in plasma and lung tissues were identified by UHPLC/IM-QTOF-MS, and liquiritin and isoliquiritigenin from Glycyrrhizae radix et rhizoma could be possible active compounds against PF. CONCLUSION: It concludes that QM treatment could treat PF by inhibiting mitochondrial complex I-mediated mitochondrial oxidated stress injury, which could offer new insights into the pharmacological mechanisms of QM in the clinical application of PF patients.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Bleomycin/toxicity , COVID-19/pathology , Lung/pathology , Oxidative Stress
4.
J Ethnopharmacol ; 306: 116143, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-36632855

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Natural herbs are gradually gaining recognition for their efficacy and safety in preventing diabetes and improving quality of life. Morus alba L. is a plant widely grown in Asia and is a traditional Chinese herb with a long history of use. Furthermore, several parts of Morus alba L. have been found to have significant health benefits. In particular, mulberry (Morus alba L.) leaves (ML) have been shown in human and animal studies to be promising hypoglycemic agents that can reduce or prevent glucolipid metabolism disorders caused by imbalances in the gut microbiota, inflammation, and oxidative stress and have demonstrated significant improvements in glucose metabolism-related markers, effectively lowering blood glucose, and reducing hyperglycemia-induced target organ damage. AIM OF THE STUDY: This review briefly summarizes the methods for obtaining ML's bioactive components, elaborates on the clinical potential of the relevant components in managing type 2 diabetes mellitus (T2DM), and focuses on the therapeutic mechanisms of gut microbiota, inflammation, oxidative stress, and metabolism, to provide more inspiration and directions for future research in the field of traditional natural plants for the management of T2DM and its complications. MATERIALS AND METHODS: Research on ML and its bioactive components was mainly performed using electronic databases, including PubMed, Google Scholar, and ScienceNet, to ensure the review's quality. In addition, master's and doctoral theses and ancient documents were consulted. RESULTS: In clinical studies, we found that ML could effectively reduce blood glucose, glycated hemoglobin, and homeostasis model assessment of insulin resistance in T2DM patients. Furthermore, many in vitro and in vivo experiments have found that ML is involved in various pathways that regulate glucolipid metabolism and resist diabetes while alleviating liver and kidney damage. CONCLUSIONS: As a potential natural anti-diabetic phytomedicine, an in-depth study of ML can provide new ideas and valuable references for applying traditional Chinese medicine to treat T2DM. While continuously exploring its clinical efficacy and therapeutic mechanism, the extraction method should be optimized to improve the efficacy of the bioactive components. in addition, further research on the dose-response relationship of drugs to determine the effective dose range is required.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Morus , Animals , Humans , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose/metabolism , Quality of Life , Plant Extracts/pharmacology , Inflammation/drug therapy , Plant Leaves/metabolism
5.
Front Endocrinol (Lausanne) ; 13: 817147, 2022.
Article in English | MEDLINE | ID: mdl-35957821

ABSTRACT

Objective: To use systems biology to explore the biomolecular network mechanism of the Jiangtang Tiaozhi Recipe (JTTZR) in the intervention of obese Type 2 diabetes (T2DM) patients with dyslipidemia. Methods: Twelve patients with obese type 2 diabetes mellitus and dyslipidemia (traditional Chinese medicine syndrome differentiation was excess heat syndrome of the stomach and intestines) were treated with JTTZR for 24 weeks, and 12 patients were included in the healthy control group. First, blood samples from 6 patients in each group (disease group before treatment, disease group after treatment, and healthy control group) were collected for RNA microarray analysis. Quantitative polymerase chain reaction (qPCR) was used to validate these target lncRNAs and mRNAs. Finally, a detailed analysis of the differences in the disease group before treatment vs. the healthy control group and the disease group after treatment vs. the disease group before treatment was undertaken. In addition, we focused on disease-related pathways and analyzed the correlation between the differential expression of target lncRNAs and clinical indicators. Results: (1) Disease group before treatment vs. healthy control group: There were 557 up-regulated lncRNAs, 273 down-regulated lncRNAs, 491 up-regulated mRNAs, and 1639 down-regulated mRNAs. GO analysis and pathway analysis showed that T2DM may be related to cell proliferation in the forebrain, post-embryonic organ development, calcium signaling pathway. qPCR validation showed that the expression of XLOC-005590 and HNF1A-AS1 as target lncRNAs increased, and this was verified by gene chip analysis. (2) Disease group after treatment vs. disease group before treatment: 128 lncRNAs were upregulated, 32 lncRNAs were downregulated, 45 mRNAs were upregulated, and 140 mRNAs were downregulated. GO analysis and pathway analysis showed that JTTZR may treat T2DM through endosome transport, the insulin signaling pathway, and glycine, serine, and threonine metabolism. qPCR validation showed that in the healthy control group, XLOC_005590 was upregulated, whereas the downstream gene (ECI2) was downregulated in the disease group before treatment. However, after 24 weeks of intervention with JTTZR, XLOC_005590 was downregulated and ECI2 was upregulated compared with the disease group before treatment (0 weeks) (P <0.05). Conclusion: JTTZR may interfere in patients with obese T2DM with dyslipidemia by regulating pathways such as fatty acid degradation, glycolysis/gluconeogenesis, and pyruvate metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Dyslipidemias , RNA, Long Noncoding , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Dodecenoyl-CoA Isomerase/genetics , Dodecenoyl-CoA Isomerase/metabolism , Drugs, Chinese Herbal/therapeutic use , Dyslipidemias/complications , Dyslipidemias/drug therapy , Dyslipidemias/genetics , Humans , Obesity/complications , Obesity/drug therapy , Obesity/genetics , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome
6.
J Ethnopharmacol ; 285: 114786, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34763043

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes is a common, complex, chronic metabolic disease. A randomized, double-blind, placebo-parallel controlled clinical study has shown that Gegen Qinlian Decoction (GQD) can reduce glycosylated hemoglobin in type 2 diabetes mellitus (T2DM) intestinal damp-heat syndrome patients in a dose-dependent manner. AIM: To explore the pathogenesis of T2DM intestinal damp-heat syndrome and the therapeutic effect of GQD from the perspective of exosomal microRNA (miRNA). METHODS: Eligible patients were selected and treated with GQD for 3 months to evaluate their clinical efficacy. Effective cases were matched with healthy volunteers, and saliva samples were collected. Exosomal miRNA was extracted from saliva and analyzed by chip sequencing. Subsequently, the function of the differential gene and the signal transduction pathway were analyzed using bioinformatics technology. Finally, three target miRNAs were randomly selected from the T2DM group/healthy group, and two target miRNAs in the T2DM before treatment/after treatment group were randomly selected for qPCR verification. Finally, we conducted a correlation analysis of the miRNAs and clinical indicators. The registration number for this research is ChiCTR-IOR-15006626. RESULTS: (1) The expression of exosomal miRNA chips showed that there were 14 differentially expressed miRNAs in the T2DM group/healthy group, and 26 differentially expressed miRNAs in the T2DM before treatment/after treatment group. (2) Enrichment results showed that in the T2DM group/healthy group, it was primarily related to cell development, body metabolism, TGF-ß, and ErbB signaling pathways. In the T2DM before treatment/after treatment group, it was mainly related to cellular metabolic regulation processes, and insulin, Wnt, and AMPK signaling pathways. (3) The qPCR verification showed that the expressions of hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-216b-5p in the T2DM group was higher (P<0.05). Following GQD treatment, hsa-miR-342-3p and hsa-miR-221-3p were significantly downregulated (P<0.05). (4) hsa-miR-9-5p was positively correlated with BMI (P<0.05), and hsa-miR-150-5p was positively correlated with total cholesterol and triglycerides (P<0.05). The GQD efficacy-related gene hsa-miR-342-3p was positively correlated with the patient's initial blood glucose level (P<0.05), and hsa-miR-221-3p was positively correlated with total cholesterol and triglycerides (P<0.05). CONCLUSION: The exosomal miRNA expression profile and signaling pathways related to T2DM intestinal damp-heat syndrome and the efficacy of GQD were established, which provides an alternative strategy for precision traditional Chinese medicine treatment.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Exosomes/genetics , Insulin , Intestines , MicroRNAs/analysis , Sequence Analysis, RNA/methods , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/adverse effects , Female , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/adverse effects , Insulin/deficiency , Insulin/metabolism , Intestines/metabolism , Intestines/microbiology , Intestines/physiopathology , Male , Medicine, Chinese Traditional/methods , Middle Aged , Patient Acuity , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Treatment Outcome
7.
Front Pharmacol ; 12: 770197, 2021.
Article in English | MEDLINE | ID: mdl-34925028

ABSTRACT

Pulmonary fibrosis (PF) is one of the pathologic changes in COVID-19 patients in convalescence, and it is also a potential long-term sequela in severe COVID-19 patients. Qimai Feiluoping decoction (QM) is a traditional Chinese medicine formula recommended in the Chinese national medical program for COVID-19 convalescent patients, and PF is one of its indications. Through clinical observation, QM was found to improve the clinical symptoms and pulmonary function and reduce the degree of PF of COVID-19 convalescent patients. To further explore the pharmacological mechanisms and possible active components of QM in anti-PF effect, UHPLC/Q-TOF-MS was used to analyze the composition of the QM extract and the active components that can be absorbed into the blood, leading to the identification of 56 chemical compounds and 10 active components. Then, network pharmacology was used to predict the potential mechanisms and targets of QM; it predicted that QM exerts its anti-PF effects via the regulation of the epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) degradation, and TGF-ß signaling pathway. Finally, TGF-ß1-induced A549 cells were used to verify and explore the pharmacological effects of QM and found that QM could inhibit the proliferation of TGF-ß1-induced A549 cells, attenuate EMT, and promote ECM degradation by inhibiting the TGF-ß/Smad3 pathway.

8.
Oxid Med Cell Longev ; 2021: 6693955, 2021.
Article in English | MEDLINE | ID: mdl-34659639

ABSTRACT

OBJECTIVE: To explore the biological mechanism of Fugui Wenyang Decoction (FGWYD) in treating vascular dementia (VD) rats based on systems pharmacology, proteomics, and a multidirectional pharmacology integration strategy. METHODS: Chemoinformatics was utilized to construct and analyze the FGWYD-VD protein-protein interaction (PPI) network. Then, the total protein in the brain tissue of the infarcted side of the rat was extracted for protein identification, pattern identification, and protein quantitative analysis. The differentially expressed proteins are analyzed by bioinformatics. Finally, the important proteins in the oxidative stress-related biological process proteins and indicators were detected through experimental pharmacology to verify the findings of systems biology and chemoinformatics. RESULTS: There were a total of 73 FGWYD components with 245 FGWYD and 145 VD genes. The results of GO enrichment analysis and pathway enrichment analysis showed that MBHD may regulate the inflammation module, oxidative stress, the synaptic plasticity regulation module, and the neuronal apoptosis section module. Compared with the sham operation group, there were 23 upregulated proteins and 17 downregulated proteins in the model group (P < 0.05). Compared with the model group, there were 16 upregulated proteins and 10 downregulated proteins in the FGWYD group (P < 0.05). Bioinformatics analysis shows that those proteins were closely related to processes such as inflammation, oxidative stress, neuronal apoptosis, neuronal growth and differentiation, signaling pathways, and transcriptional regulation. Multidirectional pharmacology further verified the neuroprotective mechanism of the Nrf2/HO-1 pathway in FGWYD treatment of VD. CONCLUSION: The mechanism of FGWYD in the treatment of VD may be related to inflammation, oxidative stress, angiogenesis, and neuronal apoptosis.


Subject(s)
Cheminformatics , Dementia, Vascular , Medicine, Chinese Traditional , Animals , Male , Rats , Cheminformatics/methods , Dementia, Vascular/drug therapy , Medicine, Chinese Traditional/methods , Rats, Sprague-Dawley , Signal Transduction
9.
Biosci Rep ; 41(3)2021 03 26.
Article in English | MEDLINE | ID: mdl-32803256

ABSTRACT

OBJECTIVE: To explore the mechanism of Radix Rhei Et Rhizome (Dahuang, DH) intervention in intracerebral hemorrhage (ICH) based on systematic pharmacology and proteomics strategy. METHODS: The systematic pharmacological strategies were utilized to find the bioactive compounds of Radix Rhei Et Rhizome, predict its potential targets, and collect ICH's disease genes; then, the Cytoscape 3.7.1 software was applied for network construction and network topology analysis. After that, in-depth analysis of the proteomics data of Radix Rhei Et Rhizome intervention in ICH was performed to complement and validate the results of systematic pharmacological predictions. RESULTS: A total of three major networks were constructed in the present study: (1) compound-compound target network of Radix Rhei Et Rhizome, (2) DH-ICH PPI network, (3) proteomics proteins' PPI network. These three major networks have been analyzed by network topology, and several small networks derived (such as signaling pathway networks). The enrichment analysis showed that Radix Rhei Et Rhizome can intervene in several biological process (such as inflammation, smooth muscle proliferation, platelet activation, blood pressure regulation, angiogenesis, hypoxia, and inflammatory response of leukocytes), signaling pathway (such as FoxO signaling pathway, complement and coagulation cascades, cGMP-PKG signaling pathway, and Rap1 signaling pathway), and reactome pathway (such as signaling by interleukins, interleukin-4 and interleukin-13 signaling, nuclear receptor transcription pathway, and platelet activation). CONCLUSION: Radix Rhei Et Rhizome may intervene in ICH-related biological process, signaling pathway, and reactome pathway found in this research so as to achieve the effect of treating ICH related injuries.


Subject(s)
Cerebral Hemorrhage/drug therapy , Drugs, Chinese Herbal/therapeutic use , Proteome/metabolism , Drugs, Chinese Herbal/pharmacology , Humans , Metabolic Networks and Pathways , Protein Interaction Maps , Proteome/drug effects , Proteome/genetics , Proteomics , Signal Transduction
10.
Oxid Med Cell Longev ; 2020: 3648040, 2020.
Article in English | MEDLINE | ID: mdl-33294120

ABSTRACT

Increased follicular atresia occurs with aging and results in reduced fecundity in laying chickens. Therefore, relieving follicular atresia of aging poultry is a crucial measure to maintain sustained high laying performance. As an antiaging agent, metformin was reported to play important roles in preventing aging in diverse animals. In this study, the physiological state of the prehierarchical follicles in the peak-laying hens (D280) and aged hens (D580) was compared, followed with exploration for the possible capacity of metformin in delaying atresia of the prehierarchical follicles in the aged D580 hens. Results showed that the capacity of yolk deposition within follicles declined with aging, and the point of endoplasmic reticulum- (ER-) mitochondrion contact decreased in the ultrastructure of the follicular cells. Meanwhile, the expression of apoptosis signaling genes was increased in the atretic small white follicles. Subsequently, the H2O2-induced follicular atresia model was established to evaluate the enhancing capacity of metformin on yolk deposition and inhibition of apoptosis in the atretic small white follicles. Metformin inhibited apoptosis through regulating cooperation of the mitochondrion-associated ER membranes and the insulin (PI3K/AKT) signaling pathway. Furthermore, metformin regulated calcium ion homeostasis to relieve ER-stress and inhibited release of mitochondrion apoptosis factors (BAD and caspase). Additionally, metformin activated PI3K/AKT that suppressed activation of BAD (downstream of the insulin signaling pathway) in the atretic follicles. Further, serum estrogen level and liver estrogen receptor-α expression were increased after dietary metformin supplementation in D580 hens. These results indicated that administration of dietary metformin activated the PI3K/AKT and calcium signaling pathway and enhanced yolk deposition to prevent chicken follicular atresia.


Subject(s)
Aging/physiology , Calcium Signaling/drug effects , Follicular Atresia/drug effects , Metformin/pharmacology , Animals , Caspases/metabolism , Chickens/metabolism , Female , Follicular Atresia/physiology , Granulosa Cells/metabolism , Hydrogen Peroxide/metabolism , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Phosphatidylinositol 3-Kinases/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism
11.
J Cell Mol Med ; 24(23): 13876-13898, 2020 12.
Article in English | MEDLINE | ID: mdl-33140562

ABSTRACT

This research utilized the systematic biological and proteomics strategies to explore the regulatory mechanism of Danshen Yin Modified (DSYM) on atherosclerosis (AS) biological network. The traditional Chinese medicine database and HPLC was used to find the active compounds of DSYM, Pharmmapper database was used to predict potential targets, and OMIM database and GeneCards database were used to collect AS targets. String database was utilized to obtain the other protein of proteomics proteins and the protein-protein interaction (PPI) data of DSYM targets, AS genes, proteomics proteins and other proteins. The Cytoscape 3.7.1 software was utilized to construct and analyse the network. The DAVID database is used to discover the biological processes and signalling pathways that these proteins aggregate. Finally, animal experiments and proteomics analysis were used to further verify the prediction results. The results showed that 140 active compounds, 405 DSYM targets and 590 AS genes were obtained, and 51 differentially expressed proteins were identified in the DSYM-treated ApoE-/- mouse AS model. A total of 4 major networks and a number of their derivative networks were constructed and analysed. The prediction results showed that DSYM can regulate AS-related biological processes and signalling pathways. Animal experiments have also shown that DSYM has a therapeutic effect on ApoE-/-mouse AS model (P < .05). Therefore, this study proposed a new method based on systems biology, proteomics, and experimental pharmacology, and analysed the pharmacological mechanism of DSYM. DSYM may achieve therapeutic effects by regulating AS-related signalling pathways and biological processes found in this research.


Subject(s)
Atherosclerosis/metabolism , Drugs, Chinese Herbal/pharmacology , Proteome/drug effects , Proteomics , Systems Biology , Animals , Apolipoproteins E/deficiency , Atherosclerosis/blood , Atherosclerosis/etiology , Biomarkers , Computational Biology/methods , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Gene Expression Profiling , Gene Ontology , Immunohistochemistry , Medicine, Chinese Traditional , Mice , Mice, Knockout , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Salvia miltiorrhiza , Systems Biology/methods
12.
Med Sci Monit ; 25: 8152-8171, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31666500

ABSTRACT

Osteoporosis is an important health problem worldwide. Siwu decoction (SWD) and its modification have a good clinical effect on osteoporosis. However, the molecular mechanism of SWD on osteoporosis has not been thoroughly explained. A systematic pharmacological methodology was utilized to predict the active compounds and potential targets of SWD, collect the genes of osteoporosis and the known targets of SWD, and analyze the osteoporosis and SWD's network. Five networks were constructed and analyzed: (1) Osteoporosis genes' protein-protein interaction (PPI) network; (2) Compound-compound target network of SWD; (3) SWD-osteoporosis PPI network; (4) Compound-known target network of SWD; and (5) SWD known target- osteoporosis PPI network. Several osteoporosis and treatment-related targets (eg.,. HSP90AB1, FGFR1, HRAS, GRB2, and PGF), clusters, biological processes, and signaling pathways (e.g., PI3K-Akt signaling pathway, insulin signaling pathway, MAPK signaling pathway and FoxO signaling pathway) were found. The therapeutic effect of SWD on osteoporosis may be achieved by interfering with the biological processes and signaling pathways related to the development of osteoporosis.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Osteoporosis/drug therapy , China , Humans , Pharmacological Phenomena , Pharmacology/methods , Protein Interaction Maps , Signal Transduction/drug effects
13.
Int J Endocrinol ; 2019: 5151678, 2019.
Article in English | MEDLINE | ID: mdl-31080477

ABSTRACT

OBJECTIVE: To assess the effectiveness and safety of melatonin for perimenopausal and postmenopausal women with osteopenia. METHODS: In this meta-analysis, data from randomized controlled trials were obtained to assess the effects of melatonin versus placebo or western medicine in perimenopausal and postmenopausal women with osteopenia. The study's registration number is CRD42018086238. The primary outcomes included bone mineral density (BMD) and T-score. RESULT: From 551 articles retrieved, three trials involving 121 patients were included. Due to the high-to-substantial heterogeneity (BMD: I2=96.9%, P=0.000; T-score: I2=74.9%, and P=0.019), the statistical analysis of BMD and T-score was abandoned. A systematic review was undergone for the two outcomes. Compared with the control group, melatonin may increase osteocalcin (WMD 4.97; 95% CI 3.14, 6.79; P < 0.00001). CONCLUSION: Based on current evidence, melatonin might be used as a safe nutritional supplement to improve bone density in perimenopausal and postmenopausal women, but its efficacy needs to be further affirmed.

14.
Reprod Biol Endocrinol ; 16(1): 27, 2018 Mar 27.
Article in English | MEDLINE | ID: mdl-29580250

ABSTRACT

OBJECTIVE: To assess the effectiveness and safety of omega-3 fatty acid for patients with PCOS. METHODS: In this meta-analysis, data from randomized controlled trials were obtained to assess the effects of omega-3 fatty acid versus placebo or western medicine in women with PCOS. The study's registration number is CRD42017065859. The primary outcomes included the change of homeostatic model assessment (HOMA) of insulin resistance, total cholesterol (TC), triglyceride (TG) and adiponectin. RESULT: Nine trials involving 591 patients were included. Comparing with the control group, omega-3 fatty acid may improve HOMA index (WMD -0.80; 95% CI -0.89, - 0.71; P<0. 00001), decrease TC and TG level [TC: (WMD -9.43; 95% CI -11.90, - 6.95; P<0. 00001); TG: (WMD -29.21; 95% CI -48.08, - 10.34; P = 0. 002)], and increase adiponectin level (WMD 1.34; 95% CI 0.51, 2.17; P = 0. 002). CONCLUSION: Based on current evidence, omega-3 fatty acid may be recommended for the treatment of PCOS with insulin resistance as well as high TC (especially LDL-C) and TG.


Subject(s)
Fatty Acids, Omega-3/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Adiponectin/blood , Cholesterol/blood , Female , Humans , Insulin Resistance , Placebos , Randomized Controlled Trials as Topic , Triglycerides/blood
15.
Drug Deliv ; 24(1): 1011-1017, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28660787

ABSTRACT

CalliSpheres® Beads (CB) is the first drug-eluting bead (DEB) product in China. Our aim was to compare the effect on the pharmacokinetics of doxorubicin (DOX) and its local concentration between lipiodol emulsions and CB in the process of TACE in rabbit livers. Twenty-five rabbits were distributed into two groups; Group 1 received lipiodol emulsions with DOX, and Group 2 received CB loaded with DOX (CBDOX). DOX was measured in the peripheral blood at different times after treatment. Livers were sampled at 1 week and 1 month for Group 2 after embolization. DOX concentration and distribution were measured in the liver. The administration of DOX by TACE with CBDOX resulted in peripheral blood DOX concentrations of 39.85 ± 13.86 ng/mL at 5 min, with a gradual decrease to 6.89 ± 1.62 ng/mL at 24 h, after treatment. Plasma concentration of DOX after chemoembolization with lipiodol was 225.91 ± 64.88 ng/mL at 5 min and decreased with time by 24 h to 5.06 ± 0.48 ng/mL. In CBDOX group, the drug impregnated an area as far as 200 µm from the bead edge. The tissue concentration of doxorubicin (tissCDOX) ranged from 40.27 µg/mL to 245.70 µg/mL at 1 week and from 5.64 µg/mL to 28.09 µg/mL at 1 month. Plasma concentrations of DOX resulting from CBDOX embolization were significantly lower than that for cTACE. CB could deliver relatively high concentrations of DOX to an area as far as 200 µm from the bead edge for at least 1 month.


Subject(s)
Chemoembolization, Therapeutic , Animals , Antibiotics, Antineoplastic , Carcinoma, Hepatocellular , Doxorubicin , Drug Liberation , Emulsions , Ethiodized Oil , Liver Neoplasms , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL