Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Stimul ; 15(5): 1153-1162, 2022.
Article in English | MEDLINE | ID: mdl-35988862

ABSTRACT

BACKGROUND AND OBJECTIVE: Transcranial direct current stimulation (tDCS) has wide ranging applications in neuro-behavioural and physiological research, and in neurological rehabilitation. However, it is currently limited by substantial inter-subject variability in responses, which may be explained, at least in part, by anatomical differences that lead to variability in the electric field (E-field) induced in the cortex. Here, we tested whether the variability in the E-field in the stimulated cortex during anodal tDCS, estimated using computational simulations, explains the variability in tDCS induced changes in GABA, a neurophysiological marker of stimulation effect. METHODS: Data from five previously conducted MRS studies were combined. The anode was placed over the left primary motor cortex (M1, 3 studies, N = 24) or right temporal cortex (2 studies, N = 32), with the cathode over the contralateral supraorbital ridge. Single voxel spectroscopy was performed in a 2x2x2cm voxel under the anode in all cases. MRS data were acquired before and either during or after 1 mA tDCS using either a sLASER sequence (7T) or a MEGA-PRESS sequence (3T). sLASER MRS data were analysed using LCModel, and MEGA-PRESS using FID-A and Gannet. E-fields were simulated in a finite element model of the head, based on individual structural MR images, using SimNIBS. Separate linear mixed effects models were run for each E-field variable (mean and 95th percentile; magnitude, and components normal and tangential to grey matter surface, within the MRS voxel). The model included effects of time (pre or post tDCS), E-field, grey matter volume in the MRS voxel, and a 3-way interaction between time, E-field and grey matter volume. Additionally, we ran a permutation analysis using PALM to determine whether E-field anywhere in the brain, not just in the MRS voxel, correlated with GABA change. RESULTS: In M1, higher mean E-field magnitude was associated with greater anodal tDCS-induced decreases in GABA (t(24) = 3.24, p = 0.003). Further, the association between mean E-field magnitude and GABA change was moderated by the grey matter volume in the MRS voxel (t(24) = -3.55, p = 0.002). These relationships were consistent across all E-field variables except the mean of the normal component. No significant relationship was found between tDCS-induced GABA decrease and E-field in the temporal voxel. No significant clusters were found in the whole brain analysis. CONCLUSIONS: Our data suggest that the electric field induced by tDCS within the brain is variable, and is significantly related to anodal tDCS-induced decrease in GABA, a key neurophysiological marker of stimulation. These findings strongly support individualised dosing of tDCS, at least in M1. Further studies examining E-fields in relation to other outcome measures, including behaviour, will help determine the optimal E-fields required for any desired effects.


Subject(s)
Motor Cortex , Transcranial Direct Current Stimulation , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Transcranial Direct Current Stimulation/methods , gamma-Aminobutyric Acid
2.
Elife ; 102021 10 08.
Article in English | MEDLINE | ID: mdl-34622779

ABSTRACT

The brain has a remarkable capacity to acquire and store memories that can later be selectively recalled. These processes are supported by the hippocampus which is thought to index memory recall by reinstating information stored across distributed neocortical circuits. However, the mechanism that supports this interaction remains unclear. Here, in humans, we show that recall of a visual cue from a paired associate is accompanied by a transient increase in the ratio between glutamate and GABA in visual cortex. Moreover, these excitatory-inhibitory fluctuations are predicted by activity in the hippocampus. These data suggest the hippocampus gates memory recall by indexing information stored across neocortical circuits using a disinhibitory mechanism.


Memories are stored by distributed groups of neurons in the brain, with individual neurons contributing to multiple memories. In a part of the brain called the neocortex, memories are held in a silent state through a balance between excitatory and inhibitory activity. This is to prevent them from being disrupted by incoming information. When a memory is recalled, an area of the brain called the hippocampus is thought to instruct the neocortex to activate the appropriate neuronal network. But how the hippocampus and neocortex coordinate their activity to switch memories 'on' and 'off' is unclear. The answer may lie in the fact that neurons in the neocortex consist of two broad types: excitatory and inhibitory. Excitatory neurons increase the activity of other neurons. They do this by releasing a chemical called glutamate. Inhibitory neurons reduce the activity of other neurons, by releasing a chemical called GABA. Koolschijn, Shpektor et al. hypothesized that the hippocampus activates memories by changing the balance of excitatory and inhibitory activity in neocortex. To test this idea, Koolschijn, Shpektor et al. invited healthy volunteers to explore a virtual reality environment. The volunteers learned that specific sounds in the environment predicted the appearance of particular visual patterns. The next day, the volunteers returned to the environment and viewed these patterns again. After each pattern, they were invited to open a virtual box. Volunteers learned that some patterns led to money in the virtual box, while other patterns did not. Finally, on day three, the volunteers listened to the sounds from day one again, this time while lying in a brain scanner. The volunteers' task was to infer whether each of the sounds would lead to money. Given that the sounds were never directly paired with the content of the virtual box, the volunteers had to solve the task by recalling the associated visual patterns. As they did so, the brain scanner measured their overall brain activity. It also assessed the relative levels of excitatory and inhibitory activity in visual areas of the neocortex, by measuring glutamate and GABA. The results revealed that as the volunteers recalled the visual cues, activity in both the hippocampus and the visual neocortex increased. Moreover, the ratio of glutamate to GABA in visual neocortex also increased which was predicted by activity in the hippocampus. This suggests that the hippocampus reactivates memories stored in neocortex by temporarily increasing excitatory activity to release memories from inhibitory control. Disturbances in the balance of excitation and inhibition occur in various neuropsychiatric disorders, including schizophrenia, autism, epilepsy and Tourette's syndrome. Damage to the hippocampus is known to cause amnesia. The current findings suggest that memories may become inaccessible ­ or may be activated inappropriately ­ when the interaction between the hippocampus and neocortex goes awry. Future studies could test this possibility in clinical populations.


Subject(s)
Hippocampus/physiology , Mental Recall , Neocortex/physiology , Neural Inhibition , Neuronal Plasticity , Acoustic Stimulation , Association , Auditory Pathways/physiology , Auditory Perception , Brain Mapping , Cues , Female , Glutamic Acid/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Male , Neocortex/diagnostic imaging , Neocortex/metabolism , Photic Stimulation , Time Factors , Visual Pathways/physiology , Visual Perception , Young Adult , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL