Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Oecologia ; 200(3-4): 323-337, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36098815

ABSTRACT

Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.


Subject(s)
DNA Barcoding, Taxonomic , Flowers , Bees , Animals , Flowers/physiology , Pollen , Ecosystem , Urbanization
2.
Sci Total Environ ; 662: 963-977, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30795483

ABSTRACT

Groundwaters provide the vast majority of unfrozen freshwater resources on the planet, but our knowledge of subsurface ecosystems is surprisingly limited. Stygofauna, or stygobionts -subterranean obligate aquatic animals - provide ecosystem services such as grazing biofilms and maintaining water quality, but we know little about how their ecosystems function. The cryptic nature of groundwaters, together with the high degree of local endemism and stygofaunal site-specific adaptations, represent major obstacles for the field. To overcome these challenges, and integrate biodiversity and ecosystem function, requires a holistic design drawing on classical ecology, taxonomy, molecular ecology and geochemistry. This study presents an approach based on the integration of existing concepts in groundwater ecology with three more novel scientific techniques: compound specific stable isotope analysis (CSIA) of amino acids, radiocarbon analysis (14C) and DNA analyses of environmental samples, stygofauna and gut contents. The combination of these techniques allows elucidation of aspects of ecosystem function that are often obscured in small invertebrates and cryptic systems. Carbon (δ13C) and nitrogen (δ15N) CSIA provides a linkage between biogeochemical patterns and ecological dynamics. It allows the identification of stygofaunal food web structures and energy flows based on the metabolic pathway of specific amino groups. Concurrently, 14C provides complementary data on the carbon recycling and incorporation within the stygobiotic trophic webs. Changes in groundwater environmental conditions (e.g. aquifer recharge), and subsequent community adaptations, can be pinpointed via the measurementof the radiocarbon fingerprint of water, sediment and specimens. DNA analyses are a rapidly expanding approach in ecology. eDNA is mainly employed as a biomonitoring tool, while metabarcoding of individuals and/or gut contents provides insight into diet regimes. In all cases, the application of the approaches in combination provides more powerful data than any one alone. By combining quantitative (CSIA and 14C) and qualitative (eDNA and DNA metabarcoding) approaches via Bayesian Mixing Models (BMM), linkages can be made between community composition, energy and nutrient sources in the system, and trophic function. This suggested multidisciplinary design will contribute to a more thorough comprehension of the biogeochemical and ecological patterns within these undervalued but essential ecosystems.


Subject(s)
Aquatic Organisms/growth & development , Ecology/methods , Environmental Monitoring/methods , Geologic Sediments/chemistry , Groundwater/standards , Animals , Aquatic Organisms/classification , Biodiversity , Carbon Isotopes/analysis , Groundwater/chemistry , Nitrogen Isotopes/analysis
SELECTION OF CITATIONS
SEARCH DETAIL