Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biol Trace Elem Res ; 202(9): 4302-4313, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38112988

ABSTRACT

One of the most pressing environmental issues is how to properly dispose of municipal solid waste (MSW), which represents both a substantial source of concern and a challenge. The current study evaluated cobalt (Co) accumulation in MSW, their uptake by different vegetables grown for two years, and related human health risks. Vegetables were grown in four different groups, such as one control (ground soil), and the remaining treatment groups (T1, T2, and T3) received varying concentrations of MSW. The analysis of Co was done through an atomic absorption spectrophotometer (AAS). Results revealed that the concentration of Co was higher in all the vegetables (n = 15) grown in soil supplemented with 75% MSW during 2nd growing year. Among all vegetables, the highest concentration of Co was observed in Solanum tuberosum at T3 during 2nd growing year. The pollution load index (PLI) value for vegetables during both growing years was more than 1 except in control soil. The findings indicated that the highest enrichment factor (EF) and hazard resilience index (HRI) value of 0.09 was present in S. tuberosum. Health index values for cobalt in the study were below 1. The HRI < 1 indicated that consumers do not face any immediate health risks. The investigation of Co concentrations in blood samples obtained from individuals residing in different areas contributes a human health perspective to the research. The findings indicate that the concentration of Co rises with an increasing proportion of MSW. While the metal levels in MSW-treated soil were not high enough to classify the soil as polluted, the results recommend that recycling MSW can substitute mineral fertilizers. Nevertheless, the presence of cobalt in MSW may directly affect soil fertility and could impact crop production and human health.


Subject(s)
Cobalt , Soil , Solid Waste , Cobalt/analysis , Humans , Soil/chemistry , Solid Waste/analysis , Composting , Public Health , Soil Pollutants/analysis , Vegetables/chemistry , Vegetables/metabolism , Plants, Edible/chemistry , Plants, Edible/metabolism
2.
ACS Omega ; 6(11): 7761-7770, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33778287

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies worldwide. As current therapies toward CRC, including chemotherapy and radiotherapy, pose limitations, such as multidrug resistance (MDR) as well as the intrinsic and potential cytotoxic effects, necessitating to find more effective treatment options with fewer side effects, traditional Chinese medicine (TCM) has an advantage in complementary therapies. In the present study, 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assays), trypan blue staining, colony formation, 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, cell cycle determination, and Annexin V-FITC/PI staining were used to examine the efficacy of Sanjie Yiliu Formula (SJYLF) against CRC proliferation and to investigate its underlying molecular mechanisms through protein expression of various proapoptotic factors by quantitative polymerase chain reaction (q-PCR) and Western blotting. This four-herb-TCM SJYLF can be suggested as one of the decoctions clinically effective in late-stage cancer treatment. Our results suggest that SJYLF robustly decreased the viability of only CRC cell lines (HCT-8, SW-480, HT-29, and DLD-1) and not the normal human kidney cells (HK-2). Moreover, SJYLF significantly suppressed proliferation and induced apoptosis in HCT-8 and downregulated cyclin D1, CDK4, and BCL-2, while Bax expression was upregulated at both mRNA and protein expression levels.

SELECTION OF CITATIONS
SEARCH DETAIL