Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Metab ; 10: 100-108, 2018 04.
Article in English | MEDLINE | ID: mdl-29428595

ABSTRACT

OBJECTIVE: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. METHODS: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut-brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism) were assessed. RESULTS: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. CONCLUSION: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D.


Subject(s)
Blood Glucose/metabolism , Enteric Nervous System/drug effects , Galanin/pharmacology , Hypoglycemic Agents/pharmacology , Neurons/drug effects , Administration, Oral , Animals , Enteric Nervous System/metabolism , Galanin/administration & dosage , Hypoglycemic Agents/administration & dosage , Hypothalamus/metabolism , Insulin/blood , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/genetics , Nitric Oxide Synthase Type I/metabolism
2.
Sci Rep ; 6: 31849, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27549402

ABSTRACT

Apelin is a bioactive peptide involved in the control of energy metabolism. In the hypothalamus, chronic exposure to high levels of apelin is associated with an increase in hepatic glucose production, and then contributes to the onset of type 2 diabetes. However, the molecular mechanisms behind deleterious effects of chronic apelin in the brain and consequences on energy expenditure and thermogenesis are currently unknown. We aimed to evaluate the effects of chronic intracerebroventricular (icv) infusion of apelin in normal mice on hypothalamic inflammatory gene expression, energy expenditure, thermogenesis and brown adipose tissue functions. We have shown that chronic icv infusion of apelin increases the expression of pro-inflammatory factors in the hypothalamus associated with an increase in plasma interleukin-1 beta. In parallel, mice infused with icv apelin exhibit a significant lower energy expenditure coupled to a decrease in PGC1alpha, PRDM16 and UCP1 expression in brown adipose tissue which could explain the alteration of thermogenesis in these mice. These data provide compelling evidence that central apelin contributes to the development of type 2 diabetes by altering energy expenditure, thermogenesis and fat browning.


Subject(s)
Adipose Tissue, Brown/drug effects , Apelin/pharmacology , Energy Metabolism/drug effects , Thermogenesis/drug effects , Adipose Tissue, Brown/metabolism , Animals , Apelin/administration & dosage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gene Expression/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Infusions, Intraventricular , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Mice , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL