Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Comp Physiol B ; 181(4): 539-49, 2011 May.
Article in English | MEDLINE | ID: mdl-21153646

ABSTRACT

Carotenoids, as pigments with antioxidant and immunoregulatory properties, play a crucial role in developing chicks. Carotenoids must be acquired through diet and are relatively scarce, suggesting that their availability is a limiting factor leading to a trade-off between colour displays and physiological functions. However, potential differences in this trade-off between male and female chicks have been little studied. We manipulated carotenoid availability in 9 days old common tern Sterna hirundo chicks by supplementing their fish diet with four carotenoids during 9 days. Our aim was to examine sex-specific responses to the experimental increase of dietary carotenoids on plasma circulation, physiological and condition variables and successful fledging. Furthermore, to explore the functional and evolutionary basis of the trade-off, we studied the relationships among carotenoid concentration, mediated immune response and foot colouration. After treatment, control chicks showed decreasing plasma levels for most carotenoid types, whereas supplemented chicks had strong increases. Colour luminosity and saturation increased in both treatment groups, while hue only changed significantly towards redder feet in supplemented females. Supplemented chicks presented neither different T-cell-mediated immunity nor other differences compared to control chicks. Nevertheless, supplemented females showed tendencies towards decreased immune responses and increased δ(15)N signatures, and supplemented males towards greater body mass. Our results indicate colouration may have, in females, a signalling function as to compensate for immunological costs. In males, additional availability of carotenoids may contribute to improve the body condition. This study suggests that trade-off responses to carotenoid availability are sex-specific in tern chicks. Thus, parental carotenoid supply to chicks may be an unrecognised component in sex allocation.


Subject(s)
Carotenoids/pharmacology , Charadriiformes/physiology , Animals , Carotenoids/blood , Carotenoids/physiology , Color , Dietary Supplements , Female , Immunity, Cellular/drug effects , Male , Pigmentation/drug effects , Pigmentation/physiology , Sex , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL