Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Inherit Metab Dis ; 43(5): 1131-1142, 2020 09.
Article in English | MEDLINE | ID: mdl-32233035

ABSTRACT

Sphingosine-1-phosphate (S1P) lyase is a vitamin B6-dependent enzyme that degrades sphingosine-1-phosphate in the final step of sphingolipid metabolism. In 2017, a new inherited disorder was described caused by mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). This condition is referred to as SPL insufficiency syndrome (SPLIS) or alternatively as nephrotic syndrome type 14 (NPHS14). Patients with SPLIS exhibit lymphopenia, nephrosis, adrenal insufficiency, and/or neurological defects. No targeted therapy for SPLIS has been reported. Vitamin B6 supplementation has therapeutic activity in some genetic diseases involving B6-dependent enzymes, a finding ascribed largely to the vitamin's chaperone function. We investigated whether B6 supplementation might have activity in SPLIS patients. We retrospectively monitored responses of disease biomarkers in patients supplemented with B6 and measured SPL activity and sphingolipids in B6-treated patient-derived fibroblasts. In two patients, disease biomarkers responded to B6 supplementation. S1P abundance and activity levels increased and sphingolipids decreased in response to B6. One responsive patient is homozygous for an SPL R222Q variant present in almost 30% of SPLIS patients. Molecular modeling suggests the variant distorts the dimer interface which could be overcome by cofactor supplementation. We demonstrate the first potential targeted therapy for SPLIS and suggest that 30% of SPLIS patients might respond to cofactor supplementation.


Subject(s)
Adrenal Insufficiency/drug therapy , Aldehyde-Lyases/metabolism , Dietary Supplements , Lymphopenia/drug therapy , Nephrosis/drug therapy , Vitamin B 6/administration & dosage , Adrenal Insufficiency/genetics , Aldehyde-Lyases/chemistry , Aldehyde-Lyases/genetics , Biomarkers/metabolism , Fibroblasts/drug effects , Humans , Lymphopenia/genetics , Mutation , Nephrosis/genetics , Phosphates , Syndrome
2.
Biotechnol Bioeng ; 109(5): 1146-54, 2012 May.
Article in English | MEDLINE | ID: mdl-22161571

ABSTRACT

Algal biofuels are a growing interest worldwide due to their potential in terms of sustainable greenhouse gas displacement and energy production. This article describes a comparative survey of biodiesel production and conversion yields of biodiesel via alkaline transesterification of acylglycerols extracted from the microalgae Thalassiosira pseudonana and Phaeodactylum tricornutum, grown under silicate or nitrate limitation, and that of model vegetable oils: soybean, and rapeseed oil. Acylglycerols were extracted with n-hexane and the total yield per biomass was determined by gravimetric assay. Under our conditions, the total acylglycerol yield from the microalgae studied was 13-18% of total dry weight. The biodiesel samples were analyzed using gas chromatography-flame ionization detector to determine quantitative information of residual glycerol, mono-, di-, and tri-acylglycerol concentrations in the biodiesel. All of the algal-based biodiesel demonstrated less mono-, di-, and tri-acylglycerol concentrations than the vegetable-based biodiesel under identical transesterification conditions. The fatty acid compositions of all the feedstock oils and their resultant biodiesel were also analyzed and reported. Based on the fatty acid methyl ester compositions of our samples we qualitatively assessed the suitability of the algal-derived biodiesel in terms of cetane number (CN), cold-flow properties, and oxidative stability.


Subject(s)
Biofuels , Diatoms/metabolism , Glycerides/analysis , Glycerides/isolation & purification , Plant Oils/chemistry , Soybean Oil/chemistry , Chromatography, Gas , Diatoms/growth & development , Fatty Acids, Monounsaturated , Nitrogen/metabolism , Rapeseed Oil , Silicates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL