Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Clin Pharmacokinet ; 61(11): 1609-1621, 2022 11.
Article in English | MEDLINE | ID: mdl-36251162

ABSTRACT

BACKGROUND AND OBJECTIVE: We aimed to develop a meropenem population pharmacokinetic model in critically ill children receiving continuous renal replacement therapy and simulate dosing regimens to optimize patient exposure. METHODS: Meropenem plasma concentration was quantified by high-performance liquid chromatography. Meropenem pharmacokinetics was investigated using a non-linear mixed-effect modeling approach. Monte Carlo simulations were performed to compute the optimal scheme of administration, according to the target of a 100% inter-dose interval time in which concentration is one to four times above the minimum inhibitory concentration (100% fT>1-4×MIC). RESULTS: A total of 27 patients with a median age of 4 [interquartile range 0-11] years, a median body weight of 16 [range 7-35] kg receiving continuous renal replacement therapy were included. Concentration-time courses were best described by a one-compartment model with first-order elimination. Body weight (BW) produced significant effects on volume of distribution (V) and BW and continuous renal replacement therapy effluent flow rate (Qeff) produced significant effects on clearance (CL): [Formula: see text] and [Formula: see text], where Vpop and CLpop estimates were 32.5 L and 5.88 L/h, respectively, normalized to a 70-kg BW and median Qeff at 1200 mL/h. Using this final model and Monte Carlo simulations, for patients with Qeff over 1200 mL/h, meropenem continuous infusion was adequate in most cases to attain 100% fT>1-4xMIC. For bacterial infections with a low minimum inhibitory concentration (≤2 mg/L), meropenem intermitent administration was appropriate for patients weighing more than 20 kg with Qeff <500 mL/h and for patients weighing more than 10 kg with Qeff <100 mL/h. CONCLUSIONS: Meropenem exposure in critically ill children receiving continuous renal replacement therapy needs dosing adjustments to the minimum inhibitory concentration that take into account body weight and the continuous renal replacement therapy effluent flow rate.


Subject(s)
Continuous Renal Replacement Therapy , Child , Humans , Infant, Newborn , Infant , Child, Preschool , Meropenem/pharmacokinetics , Critical Illness/therapy , Anti-Bacterial Agents/pharmacokinetics , Microbial Sensitivity Tests , Body Weight , Renal Replacement Therapy
2.
Pediatr Transplant ; 24(7): e13809, 2020 11.
Article in English | MEDLINE | ID: mdl-32845557

ABSTRACT

BACKGROUND: In children, vitamin D deficiency is common after renal transplantation. Besides promoting bone and muscle development, vitamin D has immunomodulatory effects, which could protect kidney allografts. The purpose of this study was to assess the association between vitamin D status and the occurrence of renal rejection. METHODS: We studied a retrospective cohort of 123 children, who were transplanted at a single institution between September 2008 and April 2019. Patients did not receive vitamin D supplementation systematically. In addition, factors influencing vitamin D status were analyzed using univariate and multivariate analyses. RESULTS: Median 25-hydroxy-vitamin D (25-OH-D) concentration was close to reference values at the time of transplantation (30 ng/mL (min-max 5-100)), but rapidly decreased within the first 3 months to 19 ng/mL (min-max 3-91) (P < .001). The overall acute rejection rate was 7%. The clinical rejection rate (5% vs 9%), subclinical rejection (12% vs 36%), and borderline changes (21% vs 28%) were not statistically different during the follow-up between the 3-month 25-OH-D < 20 ng/mL and 3-month 25-OH-D > 20 ng/mL groups. There was a correlation between the 25-OH-D levels and PTH concentration at 3 months (r = -.2491, P = .01), but no correlation between the 3-month 25-OH-D and the season of the year (F = 0.19, P = .90; F = 1.34, P = .27, respectively). Multivariate analyses revealed that age and mGFR at 3 months, were independent predictors of mGFR at 12 months. CONCLUSION: Our data show that vitamin D deficiency can develop rapidly after transplantation; vitamin D levels at 3 months are not associated with lower mGFR or a higher rejection rate at 1 year in children as opposed to adult recipients.


Subject(s)
Graft Rejection/etiology , Kidney Transplantation/adverse effects , Vitamin D Deficiency/complications , Vitamin D/analogs & derivatives , Adolescent , Allografts , Biomarkers/blood , Child , Child, Preschool , Female , Follow-Up Studies , France/epidemiology , Graft Rejection/blood , Graft Rejection/epidemiology , Graft Survival , Humans , Incidence , Infant , Infant, Newborn , Male , Radioimmunoassay , Retrospective Studies , Seasons , Survival Rate/trends , Transplant Recipients , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL