Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Elife ; 102021 05 24.
Article in English | MEDLINE | ID: mdl-34028353

ABSTRACT

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions. EQIPD defines research quality as the extent to which research data are fit for their intended use. Fitness, in this context, is defined by the stakeholders, who are the scientists directly involved in the research, but also their funders, sponsors, publishers, research tool manufacturers, and collaboration partners such as peers in a multi-site research project. The essence of the EQIPD Quality System is the set of 18 core requirements that can be addressed flexibly, according to user-specific needs and following a user-defined trajectory. The EQIPD Quality System proposes guidance on expectations for quality-related measures, defines criteria for adequate processes (i.e. performance standards) and provides examples of how such measures can be developed and implemented. However, it does not prescribe any pre-determined solutions. EQIPD has also developed tools (for optional use) to support users in implementing the system and assessment services for those research units that successfully implement the quality system and seek formal accreditation. Building upon the feedback from users and continuous improvement, a sustainable EQIPD Quality System will ultimately serve the entire community of scientists conducting non-regulated preclinical research, by helping them generate reliable data that are fit for their intended use.


Subject(s)
Biomedical Research/standards , Drug Evaluation, Preclinical/standards , Research Design/standards , Cooperative Behavior , Data Accuracy , Diffusion of Innovation , Europe , Humans , Interdisciplinary Communication , Quality Control , Quality Improvement , Stakeholder Participation
3.
Trends Pharmacol Sci ; 37(5): 364-378, 2016 05.
Article in English | MEDLINE | ID: mdl-26935643

ABSTRACT

In neuropsychiatric drug development, the rate of successful translation of preclinical to clinical efficacy has been disappointingly low. Tolerance, defined as a loss of efficacy with repeated drug exposure, is rarely addressed as a potential source of clinical failures. In this review, we argue that preclinical methods of tolerance development may have predictive validity and, therefore, inclusion of studies using repeated drug exposure early during the drug discovery and development process should serve to mitigate a proportion of clinical failures. Our analysis indicates that many published preclinical efficacy studies in the neuropsychiatry arena are conducted with acute drug administration only. Furthermore, specifically in the field of schizophrenia, there are several examples where tolerance development may be suspected as a factor contributing to translational failures. These and other examples highlight the need for built-for-purpose tolerance studies to be conducted, regardless of the target interaction mode of the drugs (i.e., agonist or antagonist, allosteric or orthosteric). We suggest that, for compounds that have failed in clinical studies, preclinical efficacy data sets need to be revisited to estimate the potential impact of tolerance development, one of the most significant known unknowns in the preclinical-to-clinical translation.


Subject(s)
Psychotropic Drugs/pharmacology , Animals , Drug Discovery , Drug Evaluation, Preclinical , Drug Tolerance , Humans , Neurosciences/methods , Psychotropic Drugs/administration & dosage , Translational Research, Biomedical/methods
4.
Eur Neuropsychopharmacol ; 25(10): 1803-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26073278

ABSTRACT

Current limitations impeding on data reproducibility are often poor statistical design, underpowered studies, lack of robust data, lack of methodological detail, biased reporting and lack of open data sharing, coupled with wrong research incentives. To improve data reproducibility, robustness and quality for brain disease research, a Preclinical Data Forum Network was formed under the umbrella of the European College of Neuropsychopharmacology (ECNP). The goal of this network, members of which met for the first time in October 2014, is to establish a forum to collaborate in precompetitive space, to exchange and develop best practices, and to bring together the members from academia, pharmaceutical industry, publishers, journal editors, funding organizations, public/private partnerships and non-profit advocacy organizations. To address the most pertinent issues identified by the Network, it was decided to establish a data sharing platform that allows open exchange of information in the area of preclinical neuroscience and to develop an educational scientific program. It is also planned to reach out to other organizations to align initiatives to enhance efficiency, and to initiate activities to improve the clinical relevance of preclinical data. Those Network activities should contribute to scientific rigor and lead to robust and relevant translational data. Here we provide a synopsis of the proceedings from the inaugural meeting.


Subject(s)
Biomedical Research/methods , Drug Evaluation, Preclinical , Neurosciences , Psychopharmacology , Animals , Congresses as Topic , Drug Evaluation, Preclinical/methods , Europe , Information Dissemination/methods , Neurosciences/methods , Periodicals as Topic , Practice Guidelines as Topic , Psychopharmacology/methods , Reproducibility of Results
5.
J Pain ; 15(4): 387.e1-14, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24374196

ABSTRACT

UNLABELLED: Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 µM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE: The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.


Subject(s)
Analgesics/pharmacology , Azabicyclo Compounds/pharmacology , Calcium Channel Blockers/pharmacology , Leucine/analogs & derivatives , Neurons/metabolism , Nociception/drug effects , Spinal Cord/drug effects , Animals , Disease Models, Animal , Immunohistochemistry , Leucine/pharmacology , Male , Neurons/drug effects , Pain/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Spinal Cord/metabolism
6.
Neuropharmacology ; 51(7-8): 1163-71, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16926034

ABSTRACT

N-acetylated-alpha-linked-acidic peptidase (NAAG peptidase) converts N-acetyl-aspartyl-glutamate (NAAG, mGluR3 agonist) into N-acetyl-aspartate and glutamate. The NAAG peptidase inhibitor 2-PMPA (2-(phosphonomethyl)pentanedioic acid) had neuroprotective activity in an animal model of stroke and anti-allodynic activity in CCI model despite its uncertain ability to penetrate the blood-brain barrier. The NAAG concentration in brain ECF under basal conditions and its alteration in relation to the brain ECF concentration of 2-PMPA is unclear. We therefore assessed those brain concentrations after i.p. administration of 2-PMPA, using in vivo microdialysis combined with LC/MS/MS analysis. Administration of 2-PMPA (50mg/kg) produced a mean peak concentration of 2-PMPA of 29.66+/-8.1microM. This concentration is about 100,000 fold more than is needed for inhibition of NAAG peptidase, and indicates very good penetration to the brain. Application of 2-PMPA was followed by a linear increase of NAAG-concentration reaching a maximum of 2.89+/-0.42microM at the end of microdialysis. However, during the time the anti-allodynic effects of 2-PMPA were observed, the NAAG concentration in the ECF did not reach levels which are likely to have an impact on any known target. It appears therefore that the observed behavioural effects of 2-PMPA may not be mediated by NAAG nor, in turn, by mGluR3 receptors.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Brain Chemistry/drug effects , Glutamate Carboxypeptidase II/antagonists & inhibitors , Neuralgia/drug therapy , Neuroprotective Agents/therapeutic use , Organophosphorus Compounds/therapeutic use , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/pharmacokinetics , Analgesics, Non-Narcotic/pharmacology , Animals , Biotransformation/drug effects , Blood-Brain Barrier , Chronic Disease , Dipeptides/analysis , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Extracellular Fluid/chemistry , Injections, Intraperitoneal , Ligation , Male , Microdialysis , Models, Animal , Neuralgia/etiology , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/pharmacology , Organophosphorus Compounds/administration & dosage , Organophosphorus Compounds/pharmacokinetics , Organophosphorus Compounds/pharmacology , Pain Threshold/drug effects , Pyridazines/pharmacology , Quinolines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/physiology , Sciatic Nerve/injuries
SELECTION OF CITATIONS
SEARCH DETAIL