Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Meat Sci ; 204: 109268, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37379705

ABSTRACT

Raw beef patties were treated with either 450 ppm of Sodium metabisulphite (SMB), or Kakadu plum powder (KPP) (0.2%, 0.4%, 0.6%, 0.8%) or no additive (negative control) and stored under Modified Atmosphere Packaging at 4 ± 1 °C for 20 days. Lipid oxidation, microbial growth rate, pH, instrumental color, and surface myoglobin were studied. Total phenolic compounds (TPC) and vitamin C of the KPP were also measured. The TPC was 13.9 g GAE/ 100 g dry weight (DW) and for vitamin C, the L-AA (l-ascorbic acid) and DHAA (dehydroascorbic acid) were 12.05 g/100 g and 0.5 g/ 100 g DW, respectively. The experimental results indicated that lipid oxidation was significantly delayed throughout the storage period for KPP-treated samples compared to both the negative control and SMB-treated samples. KPP at levels of 0.2% and 0.4% in the raw beef patties were efficient in slowing down the microbial growth rate compared to the negative control; however, SMB had a higher antimicrobial activity. The pH, the redness as well as metmyoglobin formation in the raw beef patties were reduced by the inclusion of the KPP in treated samples. A correlation (r = -0.66) was noted between KPP treatments and lipid oxidation, but there was no correlation (r = -0.006) between KPP treatment and microbial growth. This study demonstrates that KPP could be used as natural preservative for shelf-life extension of raw beef patties.


Subject(s)
Prunus domestica , Terminalia , Animals , Cattle , Ascorbic Acid/pharmacology , Lipids , Atmosphere , Oxidative Stress
2.
Antioxidants (Basel) ; 10(2)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572049

ABSTRACT

Comminuted meat products are highly susceptible to safety and quality degradation partly because of their large interfacial area in the emulsion. The food industry extensively uses synthetic chemical preservatives to delay that degradation which is caused by microbial growth, enzyme activities and oxidation reactions. However, due to the potential health damage (e.g., cardiovascular diseases, neurodegenerative diseases, cancers among others) synthetic preservatives in meat may cause, consumers are becoming skeptical to buy meat products containing such additives. In the meat industry, the interest of finding natural food preservatives is intensifying. Polyphenolic-rich plants used as natural food preservatives offer the best alternative for a partial or a complete replacement of their synthetic counterparts. They can be extracted from natural sources such as olives, fruits, grapes, vegetables, spices, herbs, and algae, and among others. The common feature of these phenolic compounds is that they have one or more aromatic rings with one or more -OH group which are essential for their antimicrobial and antioxidant properties. This review article is intended to provide an overview of the plant-based phenolic molecules used as natural food preservative, their antimicrobial and antioxidant mechanism of action, and their potential application in comminuted meat.

SELECTION OF CITATIONS
SEARCH DETAIL