Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Neurosci ; 22(2): 317-327, 2019 02.
Article in English | MEDLINE | ID: mdl-30598527

ABSTRACT

Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice. For the first time, we visualized whole-body neuronal projections in adult mice. We assessed CNS trauma effects in the whole body and found degeneration of peripheral nerve terminals in the torso. Furthermore, vDISCO revealed short vascular connections between skull marrow and brain meninges, which were filled with immune cells upon stroke. Thus, our new approach enables unbiased comprehensive studies of the interactions between the nervous system and the rest of the body.


Subject(s)
Meninges/diagnostic imaging , Neurons/metabolism , Skull/diagnostic imaging , Whole Body Imaging/methods , Animals , Meninges/metabolism , Mice , Mice, Transgenic , Skull/metabolism
2.
Phytomedicine ; 44: 45-55, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29895492

ABSTRACT

BACKGROUND: Neuroinflammation is a key factor of Alzheimer's disease (AD) and other neurodegenerative conditions. Microglia are the resident mononuclear immune cells of the central nervous system (CNS). They play an essential role in the maintenance of homeostasis and responses to neuroinflammation. Ginkgo biloba extract EGb 761 is one of the most commonly used natural medicines owing to its established efficacy and remarkable biological activities especially in respect to CNS diseases. However, only few studies have addressed the effects and mechanisms of Ginkgo biloba extract in microglia activation. METHODS: We measured the production of pro-inflammatory mediators and cytokines by ELISA and analyzed gene expressions by qRT-PCR and Western Blot in LPS treated cultured primary rat microglia. RESULTS: The Ginkgo biloba extract EGb 761 significantly inhibited the release of prostaglandin E2 (PGE2) and differentially regulated the levels of pro-inflammatory cytokines. The inhibition of LPS-induced PGE2 release in primary microglia was partially dependent on reduced protein synthesis of mPGES-1 and the reduction in the activation of cytosolic phospholipase A2 (cPLA2) without altering COX-2 enzymatic activity, inhibitor of kappa B alpha (IkappaBalpha) degradation, and the activation of multiple mitogen activated protein kinases (MAPKs). Altogether, we showed that EGb 761 reduces neuro-inflammatory activation in primary microglial cells by targeting PGE2 release and cytokines. CONCLUSION: Ginkgo biloba extract EGb 761 displayed anti-neuroinflammatory activity in LPS-activated primary microglia cells. EGb 761 was able to reduce neuroinflammatory activation by targeting the COX/PGE2 pathway. This effect might contribute to the established clinical cognitive efficacy in Alzheimer's disease, vascular and mixed dementia.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Cells, Cultured , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Dinoprostone/metabolism , Ginkgo biloba , Group IV Phospholipases A2/metabolism , I-kappa B Proteins/antagonists & inhibitors , I-kappa B Proteins/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , Microglia/pathology , Mitogen-Activated Protein Kinases/metabolism , Rats
3.
Toxicol Lett ; 294: 73-86, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29775722

ABSTRACT

Bifenthrin (BF) is a synthetic pyrethroid pesticide widely used in several countries to manage insect pests on diverse agricultural crops. Growing evidence indicates that BF exposure is associated with an increased risk of developing neurodegenerative disorders. However, the mechanisms by which BF induces neurological and anxiety alterations in the frontal cortex and striatum are not well known. The present in vivo study was carried out to determine whether reactive oxygen species (ROS)-mediated oxidative stress (OS) and neuroinflammation are involved in such alterations. Thirty-six Wistar rats were thus randomly divided into three groups and were orally administered with BF (0.6 and 2.1 mg/kg body weight, respectively) or the vehicle (corn oil), on a daily basis for 60 days. Results revealed that BF exposure in rats enhanced anxiety-like behavior after 60 days of treatment, as assessed with the elevated plus-maze test by decreases in the percentage of time spent in open arms and frequency of entries into these arms. BF-treated rats also exhibited increased oxidation of lipids and carbonylated proteins in the frontal cortex and striatum, and decreased glutathione levels and antioxidant enzyme activities including superoxide dismutase, catalase and glutathione peroxidase. Treatment with BF also increased protein synthesis and mRNA expression of the inflammatory mediators cyclooxygenase-2 (COX-2), microsomal prostaglandin synthase-1 (mPGES-1) and nuclear factor-kappaBp65 (NF-kBp65), as well as the production of tumor necrosis factor-α (TNF-α) and ROS. Moreover, BF exposure significantly decreased protein synthesis and mRNA expression of nuclear factor erythroid-2 (Nrf2) and acetylcholinesterase (AChE), as well as gene expression of muscarinic-cholinergic receptors (mAchR) and choline acetyltransferase (ChAT) in the frontal cortex and striatum. These data suggest that BF induced neurological alterations in the frontal cortex and striatum of rats, and that this may be associated with neuroinflammation and oxidative stress via the activation of Nrf2/NF-kBp65 pathways, which might promote anxiety-like behavior.


Subject(s)
Anxiety/etiology , Insecticides/toxicity , Neuritis/chemically induced , Neurotoxicity Syndromes/physiopathology , Oxidative Stress/drug effects , Pyrethrins/toxicity , Tremor/etiology , Animals , Behavior, Animal/drug effects , Biomarkers/metabolism , Cholinergic Neurons/drug effects , Cholinergic Neurons/immunology , Cholinergic Neurons/metabolism , Corpus Striatum/drug effects , Corpus Striatum/immunology , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Frontal Lobe/drug effects , Frontal Lobe/immunology , Frontal Lobe/metabolism , Gene Expression Regulation/drug effects , Insecticides/administration & dosage , Lipid Peroxidation/drug effects , Male , Maze Learning/drug effects , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuritis/immunology , Neuritis/metabolism , Neuritis/physiopathology , Neurotoxicity Syndromes/immunology , Neurotoxicity Syndromes/metabolism , Pyrethrins/administration & dosage , Random Allocation , Rats, Wistar
4.
Article in English | MEDLINE | ID: mdl-23737832

ABSTRACT

Cryptolepine, an indoloquinoline alkaloid in Cryptolepis sanguinolenta, has anti-inflammatory property. In this study, we aimed to evaluate the effects of cryptolepine on lipopolysaccharide (LPS)- induced neuroinflammation in rat microglia and its potential mechanisms. Microglial activation was induced by stimulation with LPS, and the effects of cryptolepine pretreatment on microglial activation and production of proinflammatory mediators, PGE2/COX-2, microsomal prostaglandin E2 synthase and nitric oxide/iNOS were investigated. We further elucidated the role of Nuclear Factor-kappa B (NF- κ B) and the mitogen-activated protein kinases in the antiinflammatory actions of cryptolepine in LPS-stimulated microglia. Our results showed that cryptolepine significantly inhibited LPS-induced production of tumour necrosis factor-alpha (TNF α ), interleukin-6 (IL-6), interleukin-1beta (IL-1 ß ), nitric oxide, and PGE2. Protein and mRNA levels of COX-2 and iNOS were also attenuated by cryptolepine. Further experiments on intracellular signalling mechanisms show that I κ B-independent inhibition of NF- κ B nuclear translocation contributes to the anti-neuroinflammatory actions of cryptolepine. Results also show that cryptolepine inhibited LPS-induced p38 and MAPKAPK2 phosphorylation in the microglia. Cell viability experiments revealed that cryptolepine (2.5 and 5 µ M) did not produce cytotoxicity in microglia. Taken together, our results suggest that cryptolepine inhibits LPS-induced microglial inflammation by partial targeting of NF- κ B signalling and attenuation of p38/MAPKAPK2.

5.
Eur J Med Chem ; 63: 333-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23507189

ABSTRACT

Cryptolepis sanguinolenta and its bioactive alkaloid, cryptolepine have shown anti-inflammatory activity. However, the underlying mechanism of anti-inflammatory action in neuronal cells has not been investigated. In the present study we evaluated an extract of C. sanguinolenta (CSE) and cryptolepine (CAS) on neuroinflammation induced with IL-1ß in SK-N-SH neuroblastoma cells. We then attempted to elucidate the mechanisms underlying the anti-neuroinflammatory effects of CAS in SK-N-SH cells. Cells were stimulated with 10 U/ml of IL-1ß in the presence or absence of different concentrations of CSE (25-200 µg/ml) and CAS (2.5-20 µM). After 24 h incubation, culture media were collected to measure the production of PGE2 and the pro-inflammatory cytokines (TNFα and IL-6). Protein and gene expressions of cyclooxygenase (COX-2) and microsomal prostaglandin synthase-1 (mPGES-1) were studied by immunoblotting and qPCR, respectively. CSE produced significant (p < 0.05) inhibition of TNFα, IL-6 and PGE2 production in SK-N-SH cells. Studies on CAS showed significant and dose-dependent inhibition of TNFα, IL-6 and PGE2 production in IL-1ß-stimulated cells without affecting viability. Pre-treatment with CAS (10 and 20 µM) was also found to inhibit IL-1ß-induced protein and gene expressions of COX-2 and mPGES-1. Further studies to determine the mechanism of action of CAS showed inhibition of NF-κBp65 nuclear translocation, but not IκB phosphorylation. At 10 and 20 µM, CAS inhibited IL-1ß-induced phosphorylation of p38 MAPK. Studies on the downstream substrate of p38, MAPK-activated protein kinase 2 (MAPKAPK2) showed that CAS produced significant (p < 0.05) and dose dependent inhibition of MAPKAPK2 phosphorylation in IL-1ß-stimulated SK-N-SH cells. This study clearly shows that cryptolepine (CAS) inhibits neuroinflammation through mechanisms involving inhibition of COX-2 and mPGES-1. It is suggested that these actions are probably mediated through NF-κB and p38 signalling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Indole Alkaloids/pharmacology , Quinolines/pharmacology , Transcription Factor RelA/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Active Transport, Cell Nucleus/drug effects , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cell Line, Tumor , Cryptolepis/chemistry , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Humans , Immunoblotting , Indole Alkaloids/chemical synthesis , Indole Alkaloids/chemistry , Interleukin-1beta/pharmacology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Molecular Structure , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphorylation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Prostaglandin-E Synthases , Quinolines/chemical synthesis , Quinolines/chemistry , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
6.
PLoS One ; 7(7): e41288, 2012.
Article in English | MEDLINE | ID: mdl-22911773

ABSTRACT

Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury.


Subject(s)
Diet , Learning , Physical Conditioning, Animal , Psychomotor Performance , Spinal Cord Injuries/rehabilitation , Animals , Arachidonic Acid/administration & dosage , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Curcumin/administration & dosage , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Docosahexaenoic Acids/administration & dosage , Fatty Acids/metabolism , Male , Mice , Psychomotor Performance/drug effects , Qa-SNARE Proteins/genetics , Qa-SNARE Proteins/metabolism , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord Injuries/diet therapy , Spinal Cord Injuries/metabolism
7.
J Neuroimmunol ; 174(1-2): 39-51, 2006 May.
Article in English | MEDLINE | ID: mdl-16529823

ABSTRACT

Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Aspirin/pharmacology , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Neurons/drug effects , Blotting, Western/methods , Cell Line, Tumor , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Dinoprostone/antagonists & inhibitors , Dose-Response Relationship, Drug , Drug Interactions , Gene Expression/drug effects , Humans , Interleukin-1/pharmacology , Neural Inhibition/drug effects , Neuroblastoma
SELECTION OF CITATIONS
SEARCH DETAIL