Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Type of study
Language
Affiliation country
Publication year range
1.
Food Funct ; 15(8): 4421-4435, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38563324

ABSTRACT

Fu Brick tea belongs to fermented dark tea, which is one of the six categories of tea. Fu Brick tea has been reported to reduce adiposity and has beneficial effects in the treatment of hypercholesterolemia and cardiovascular disease. Theabrownin (TB) is one of the pigments with the most abundant content in Fu Brick tea. TB has also been reported to have lipid-lowering effects, but its mechanism remains unclear. We found that TB could effectively reduce the insulin resistance and fat deposition induced by a high fat diet (HFD), decrease inflammation in the liver, improve intestinal integrity, and reduce endotoxins in circulation. Further studies showed that TB increased the abundance of Verrucomicrobiota and reduced the abundance of Firmicutes and Desulfobacterota in the intestinal tract of obese mice. The alteration of gut microbiota is closely linked to the metabolic phenotype after TB treatment through correlation analysis. Moreover, TB changed the gut microbial metabolites including L-ornithine, α-ketoglutarate, and glutamine, which have also been found to be upregulated in the liver after TB intervention. In vitro, L-ornithine, α-ketoglutarate, or glutamine significantly reduced lipopolysaccharide (LPS)-induced inflammation in macrophages. Therefore, our results suggest that TB can reduce adiposity, systemic insulin resistance, and liver inflammation induced by a HFD through altering gut microbiota and improving the intestinal tight junction integrity. The metabolites of gut microbiota might also play a role in ameliorating the HFD-induced phenotype by TB.


Subject(s)
Fatty Liver , Gastrointestinal Microbiome , Inflammation , Insulin Resistance , Mice, Inbred C57BL , Tea , Animals , Male , Mice , Catechin/pharmacology , Diet, High-Fat/adverse effects , Fatty Liver/drug therapy , Fatty Liver/metabolism , Gastrointestinal Microbiome/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Liver/metabolism , Liver/drug effects , Tea/chemistry
2.
Front Endocrinol (Lausanne) ; 14: 1118925, 2023.
Article in English | MEDLINE | ID: mdl-36742397

ABSTRACT

Introduction: Nonalcoholic steatohepatitis (NASH), also known as metabolic steatohepatitis, is a clinical syndrome with pathological changes like alcoholic hepatitis but without a history of excessive alcohol consumption. NASH is closely related to metabolic disorders such as obesity, insulin resistance, type 2 diabetes mellitus, and hyperlipidemia. Its main characteristics are hepatocyte steatosis with hepatocyte injury and inflammation. In severe cases, it can develop into liver cirrhosis. At present, there is no special treatment for NASH. Theabrownin (TB) is the main pigment substance in fermented tea. Theabrownin has beneficial effects on lipid metabolism and intestinal flora. However, the effect of theabrownin on NASH has not been studied. Methods: This study was aimed at exploring the effects of theabrownin from Fuzhuan brick tea on NASH. 8-week-old mice were randomly assigned to three groups and fed with chow diet (CD), methionine and choline sufficient (MCS) diet (MCS Ctrl), which is a Methionine/choline deficient (MCD) control diet, and MCD diet. After 5 weeks of feeding, the MCD group mice were randomly divided into two groups and were gavaged with double distilled water (MCD Ctrl) or theabrownin (MCD TB) (200mg/kg body weight, dissolved in double distilled water) every day for another 4 weeks respectively, while continuing MCD diet feeding. Results: We found that theabrownin treatment could not improve liver mass loss and steatosis. However, theabrownin ameliorated liver injury and decreased liver inflammatory response. Theabrownin also alleviated liver oxidative stress and fibrosis. Furthermore, our results showed that theabrownin increased hepatic level of fibroblast growth factor 21 (FGF21) and reduced the phosphorylation of mitogen-activated protein kinase p38 in MCD diet-fed mice.


Subject(s)
Choline Deficiency , Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Choline/metabolism , Choline/pharmacology , Diet , Fibrosis , Inflammation/drug therapy , Inflammation/pathology , Methionine/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Oxidative Stress , Racemethionine/metabolism , Racemethionine/pharmacology , Tea
SELECTION OF CITATIONS
SEARCH DETAIL