Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Neuroreport ; 7(7): 1315-9, 1996 May 17.
Article in English | MEDLINE | ID: mdl-8817557

ABSTRACT

The suprachiasmatic nuclei (SCN) contain a circadian clock whose activity can be recorded in vitro for several days. This clock can be reset by the application of neuropeptide Y. In this study, we focused on determination of the receptor responsible for neuropeptide Y phase shifts of the hamster circadian clock in vitro. Coronal hypothalamic slices containing the SCN were prepared from Syrian hamsters housed under a 14 h:10 h light:dark cycle. Tissue was bathed in artificial cerebrospinal fluid (ACSF), and the firing rates of individual cells were sampled throughout a 12 h period. Control slices received either no application or application of 200 nl ACSF to the SCN at zeitgeber time 6 (ZT6; ZT12 was defined as the time of lights off). Application of 200 ng/200 nl of neuropeptide Y at ZT6 resulted in a phase advance of 3.4 h. Application of the Y2 receptor agonist, neuropeptide Y (3-36), induced a similar phase advance in the rhythm, while the Y1 receptor agonist, [Leu31, Pro34]-neuropeptide Y had no effect. Pancreatic polypeptide (rat or avian) also had no measurable phase-shifting effect. Neuropeptide Y applied at ZT20 or 22 had no detectable phase-shifting effect. These results suggest that the phase-shifting effects of neuropeptide Y are mediated through a Y2 receptor, similar to results found in vivo.


Subject(s)
Circadian Rhythm/drug effects , Receptors, Neuropeptide Y/drug effects , Suprachiasmatic Nucleus/drug effects , Animals , Cricetinae , Hypothalamus/drug effects , In Vitro Techniques , Male , Mesocricetus , Neuropeptide Y
2.
Brain Res ; 552(1): 47-52, 1991 Jun 21.
Article in English | MEDLINE | ID: mdl-1913179

ABSTRACT

Administration of the benzodiazepine triazolam at the appropriate time in the circadian cycle has been shown to induce phase shifts in hamster circadian rhythms. These phase shifts can be blocked by geniculo-hypothalamic tract (GHT) ablation or by restraint of activity. The present study examined the effects of the benzodiazepine chlordiazepoxide on running-wheel activity rhythms of hamsters. The phase-advancing effect of intraperitoneal injections of chlordiazepoxide administered at circadian time 6 (CT 6) was dose-dependent. Average shifts ranged from 6 min at a dose of 0.05 mg/kg to 135 min at a dose of 200 mg/kg. Four of twenty hamsters did not show a phase shift to any dose tested. Phase advance shifts to chlordiazepoxide (CT 6; 100 mg/kg) were blocked by GHT lesions. Chlordiazepoxide injections at doses which induced phase shifts were often followed by sedation. These results indicate that chlordiazepoxide is similar to triazolam, in that its ability to induce phase shifts at circadian time 6 is blocked by GHT lesions.


Subject(s)
Chlordiazepoxide/pharmacology , Circadian Rhythm/drug effects , Geniculate Bodies/physiology , Hypothalamus/physiology , Motor Activity , Animals , Cricetinae , Dose-Response Relationship, Drug , Male , Mesocricetus , Motor Activity/drug effects , Restraint, Physical , Suprachiasmatic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL