Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Animal ; 18(4): 101113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492538

ABSTRACT

Copper is routinely supplemented to weanling pig diets at concentrations above nutritional requirements to enhance growth performance. We hypothesised that this effect depends on the source of Cu and its dietary concentration. We tested this in weaned pigs (26 d of age) over a 35-d period using a 2 × 3 factorial arrangement with two Cu-sources (CuSO4 and Cu2O, monovalent copper oxide, CoRouge®) and three supplementary dietary Cu-levels (15, 80 and 160 mg Cu/kg) as respective factors. Increasing Cu level linearly increased (P < 0.001) final BW and daily gain. These effects tended (P = 0.09) to be greater with Cu2O than CuSO4. Feed conversion ratio decreased linearly (P < 0.001) with increasing dietary Cu content, independent of Cu source. Plasma Cu, Zn and Fe levels were unaffected, whereas liver Cu content increased quadratically (P < 0.001) with increasing dietary Cu content, with a larger increase (P < 0.001) with CuSO4 than Cu2O. Bile Cu content increased quadratically (P = 0.025) with increasing Cu content, irrespective of Cu source. RT-qPCR analysis revealed that increasing Cu content quadratically (P = 0.009) increased duodenal but not ileal metallothionein 1A (MT1A) mRNA, with greater effect (P = 0.010) of CuSO4. Regardless of the Cu source, increasing Cu dose linearly increased (P = 0.006) duodenal DMT1/SLC11A2 mRNA but decreased ZIP4/SLC39A4 mRNA in duodenum (P < 0.001) and ileum (P < 0.005). ZnT10/SLC30A10 mRNA was significantly (P = 0.021) and numerically (P = 0.061) greater with Cu2O compared to CuSO4, in duodenum and ileum, respectively. Copper content quadratically modulated duodenal but not ileal transferrin receptor (P = 0.029) and ferric reductase CYBRD1 mRNA (P = 0.022). In hypothalamus, high Cu dose (P = 0.024) and Cu2O as source (P = 0.028) reduced corticotropin-releasing hormone (CRH) mRNA. Low versus high CuSO4 increased corticotropin-releasing hormone receptor (CRHR2) mRNA, while low Cu2O had the opposite effect (P = 0.009). In conclusion, incremental Cu intake enhanced growth performance, with a tendency for a greater effect of Cu2O. The lower increase in duodenal MT1A mRNA and liver Cu content indicates that less Cu from Cu2O was absorbed by gut and sequestered in liver. Thus, high Cu absorption is not essential for its growth-promoting effect and dietary Cu may affect intestinal Fe and Zn absorption via the active, transcellular route. The effects on hypothalamic CRH and CRHR2 expression indicate a role for the hypothalamus in mediating the effects of Cu on growth performance.


Subject(s)
Copper , Trace Elements , Swine , Animals , Copper/pharmacology , Trace Elements/metabolism , Corticotropin-Releasing Hormone/metabolism , Diet/veterinary , Dietary Supplements , Duodenum , RNA, Messenger/genetics , Animal Feed/analysis
2.
J Anim Sci ; 90 Suppl 4: 197-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23365328

ABSTRACT

Complexation of dietary phytate with cations is a major cause of reduced bioavailability of Zn and possibly Cu in pig diets. We conducted 2 studies with 2 treatments in young growing pigs (8 to 40 kg) to estimate potential contributions of phytase to availability and supply of Zn and Cu, respectively. Each treatment comprised 10 pens with 8 pigs each as experimental units. In Exp. 1, 500 phytase units (FTU)/kg of microbial phytase (Natuphos 5000G; BASF) was added to a diet containing 15 mg Zn from ZnSO(4) and 160 mg/kg Cu from CuSO(4) in addition to Cu and Zn from feed ingredients. In Exp. 2, 500 FTU/kg was added to a diet containing 45 mg Zn from ZnSO(4) without added CuSO(4). Feces were collected to determine nutrient digestibility, blood was collected, and pigs were killed to determine Cu and Zn in the liver. In both experiments, phytase inclusion increased (P < 0.001) Zn digestibility by on average 10% units, serum Zn level (P < 0.001) by 0.4 mg/L, and liver Zn content (P < 0.001) by 129 mg/kg DM. In Exp. 1 phytase increased (P = 0.03) Cu digestibility by 6% units but reduced (P = 0.04) liver Cu content by 35 mg/kg DM. In Exp. 2 phytase reduced (P < 0.001) Cu digestibility by 16% units without affecting liver Cu content. Results indicate that the effect of phytase on Cu availability depends on dietary Cu and Zn content and the response variable studied. In conclusion, the consistent effects of phytase on indices of Zn status allow a reduction of Zn inclusion in phytase-supplemented diets.


Subject(s)
6-Phytase/pharmacology , Copper/pharmacokinetics , Swine/physiology , Zinc/blood , 6-Phytase/administration & dosage , 6-Phytase/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Biological Availability , Copper/blood , Diet/veterinary
3.
Vet Parasitol ; 168(3-4): 269-77, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-19954891

ABSTRACT

Two experiments were performed to determine the anthelmintic effect of some phytogenic feed additives on a mild infection of Ascaris suum in growing and finishing pigs. Usually, an infection of A. suum is controlled by using conventional synthetic drugs. Organic farmers, however, prefer a non-pharmaceutical approach to worm control. Therefore, phytotherapy could be an appropriate alternative. In the first experiment, a commercial available organic starter diet was supplemented with 3% of a herb mixture, adding 1% Thymus vulgaris, 1% Melissa officinalis and 1% Echinacea purpurea to the diet, or with 4% of a herb mixture, thereby adding the mentioned herbs plus 1% Camellia sinensis (black tea). A negative control group (no treatment) and a positive control group (treatment with conventional synthetic drug flubendazole) were included. In the second experiment, the anthelmintic properties against A. suum of three individual herbs, Carica papaya, Peumus boldus and Artemisia vulgaris, each in a dose of 1%, were tested. Pigs were infected with 1000 infective worm eggs each. Each experiment was performed with 32 individually housed growing pigs (8 replicates/treatment), which were monitored for 67 days. It was hypothesized that the herbs would block the cycles of the larvae, thereby preventing the development of adult worms. Therefore, phytogenic feed additives were not supplied during the whole experimental period, but only from the start until D39. Pigs were inoculated with infective worm eggs during five consecutive days (D17-D21). At D67 all pigs were dissected, whereafter livers were checked for the presence of white spots. Also numbers of worms in the small intestine were counted. In experiment 1, the numbers of worm-infected pigs were similar for both the herb supplemented (groups 3 and 4) and the unsupplemented (group 1) treatments (5-6 pigs of 8), while the treatment with flubendazole (group 2) resulted in 0 infected pigs. In experiment 2, herb addition (groups 2-4) did not significantly reduce the number of worm-infected pigs compared to the negative control (group 1). It can be concluded that the tested herb mixtures and individual herbs in the diets of growing and finishing pigs did not decrease the number of pigs which were infected with A. suum, although the herb mixture without black tea and also boldo leaf slightly (P<0.10) reduced the number of worms in the intestinal tract. The tested herb mixtures and individual herbs did not affect the performance of the pigs.


Subject(s)
Anthelmintics/pharmacology , Ascariasis/veterinary , Ascaris suum/drug effects , Food Additives/pharmacology , Phytotherapy/veterinary , Swine Diseases/parasitology , Animals , Anthelmintics/chemistry , Anthelmintics/therapeutic use , Ascariasis/drug therapy , Ascariasis/parasitology , Body Weight/drug effects , Eating/drug effects , Food Additives/chemistry , Food Additives/therapeutic use , Male , Swine , Swine Diseases/drug therapy
4.
J Anim Sci ; 80(6): 1413-8, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12078720

ABSTRACT

To assess the effects of creep feed consumption on individual feed intake characteristics and performance of group-housed weaned pigs, 16 litters (149 piglets) were fed a commercial creep feed (3,040 kcal NE/kg, 15.2 g lysine/kg) supplemented with 1% chromic oxide. Another five litters (48 piglets) were not given access to creep feed (no-feed). Piglets were weaned at 28 d after birth. On d 18, 22, and 27 of age, fecal samples from all the piglets were taken using fecal loops. A green color of the feces indicated that the piglet had eaten creep feed. Piglets that had green-colored feces three times were considered as eaters. Piglets that never showed green-colored feces were considered as non-eaters. At weaning 22 piglets of each type (no-feed, non-eaters, and eaters) were selected based on BW, litter origin, and sex. These 66 pigs were assigned to six pens equipped with computerized feeding stations. Eaters, non-eaters, and no-feed pigs were equally divided over all six pens. After weaning a prestarter (d 0 to 13) and a starter diet (d 14 to 34) were offered for ad libitum consumption. The individual feed intake characteristics of latency time (interval between weaning and first feed intake) and initial feed intake (intake during the first 24 h following first feed intake) and performance traits were determined for all piglets. The pigs that were designated as eaters needed less time between weaning and first feed intake than the pigs that were designated as non-eaters and no-feed pigs (P = 0.04 and P = 0.06, respectively). Initial feed intake was not affected (P > 0.1) by feed intake prior to weaning. However, during d 0 to 8 the eaters had more visits per day during which feed was consumed than both the non-eaters and no-feed pigs. Averaged over the first 8 d after weaning, the ADFI and ADG of the eaters were higher than that of the non-eaters and no-feed pigs (P < 0.05). Averaged over the total 34-d period the effect of creep feed intake on postweaning ADFI was much less pronounced (P = 0.20), whereas ADG of the eaters was the highest (P < 0.05). Creep feed intake during the sucking period stimulates early postweaning feed intake as well as postweaning performance.


Subject(s)
Energy Intake/physiology , Swine/growth & development , Animal Feed , Animal Husbandry/methods , Animals , Animals, Suckling/growth & development , Eating , Feces/chemistry , Time Factors , Weaning , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL