Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Poult Sci ; 102(10): 102976, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37562127

ABSTRACT

Flaxseed is a rich source of α-linolenic acid (ALA, 18:3 n-3) and can be used to enrich chicken tissues with n-3 fatty acids (FA). However, antinutritional factors in flaxseed compromise the live performance of birds coupled with increased oxidative stress. Chromium (Cr) is a trace element with antioxidant properties. It is hypothesized that Cr supplementation will affect the hepatic total lipid profile, phospholipid n-3 and n-6 FA molecular species, lipid oxidation products, and transcription of genes associated with lipid metabolism in broiler chickens fed flaxseed. Ninety (n = 90), day-old Cornish cross chicks were fed a corn-soybean meal-based diet containing 0% flaxseed (CTR), 10% flaxseed (FLAX), and FLAX + 0.05% organic Cr (FLAXCr) for 42 d. The chicks were kept in 18 pens with 5 chicks per pen. For all response variables, the effect of dietary treatments were compared separately using SAS 9.4. P values were considered significant at ≤0.05. Total lipids, saturated FA, long-chain (≥20C) n-6 FA were reduced while total n-3 FA and long-chain n-3 FA were higher in the liver of FLAX and FLAXCr than CTR (P < 0.05). Hepatic phosphatidylcholine (PC) and phosphatidylethnolamine (PE) n-3 species (36:5, 38:6) were higher in FLAX and FLAXCr compared to CTR (P < 0.05). On the contrary, n-6 species in PC (36:4, 38:4) and PE (38:4) were lower in FLAX and FLAXCr compared to CTR (P < 0.05). Addition of Cr to a flaxseed-containing diet led to an increase in PE 36:4 (P < 0.05). A decrease in the transcription of ELOVL6 gene involved in de novo lipid synthesis was observed in FLAXCr (P = 0.01). An increase in the transcription of genes involved in FA oxidation (ACAA2, ACOX1) was observed in FLAX compared to FLAXCr (P = 0. 05; P = 0.02). A trend for a decrease in the transcription of FADS2 and HMGCS1 was observed in FLAXCr than CTR and FLAX (P = 0.06; 0.08). Transcription of other genes involved in de novo lipid synthesis (FASN, PPARA), FA oxidation (CPT1A, CPT2, ACAA1), and oxidative stress response (GPX1, NQO11, GSTA2, SLC40A1, NFE2L2) were not affected by the diets (P > 0.05). Lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS) in liver was reduced in FLAXCr than CTR (P < 0.05) and was not different from FLAX (P > 0.05). Serum cholesterol and aspartic aminotransferase were reduced in FLAX and FLAXCr compared to CTR (P < 0.05). The serum glucose level was decreased in FLAX compared to CTR (P < 0.05) and a trend in decrease was noticed in FLAXCr vs. CTR (P = 0.10). Serum TBARS were higher in CTR and FLAXCr compared to FLAX (P < 0.05). In conclusion, flaxseed supplementation enhances total and long-chain n-3 FA while reducing total lipids, saturated, and n-6 FA in the liver. Supplementing Cr along with flaxseed increased n-6 FA species in the hepatic PE and decreased the transcription of genes involved in FA oxidation and lipid synthesis.


Subject(s)
Fatty Acids , Flax , Animals , Fatty Acids/metabolism , Chickens/genetics , Chickens/metabolism , Flax/metabolism , Phospholipids/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Lipid Metabolism , Chromium/metabolism , Diet/veterinary , Liver/metabolism , Oxidative Stress , Animal Feed/analysis , Dietary Supplements
2.
Genes (Basel) ; 12(8)2021 08 21.
Article in English | MEDLINE | ID: mdl-34440457

ABSTRACT

The inclusion of fat in livestock diets represents a valuable and cost-effective way to increase the animal's caloric intake. Beyond their caloric value, fatty acids can be understood in terms of their bioactivity, via the modulation of the ligand-dependent nuclear peroxisome proliferator-activated receptors (PPAR). Isotypes of PPAR regulate important metabolic processes in both monogastric and ruminant animals, including the metabolism of fatty acids (FA), the production of milk fat, and the immune response; however, information on the modulation of bovine PPAR by fatty acids is limited. The objective of this study was to expand our understanding on modulation of bovine PPAR by FA, both when used individually and in combination, in an immortalized cell culture model of bovine liver. Of the 10 FA included in the study, the greatest activation of the PPAR reporter was detected with saturated FA C12:0, C16:0, and C18:0, as well as phytanic acid, and the unsaturated FA C16:1 and C18:1. When supplemented in mixtures of 2 FA, the most effective combination was C12:0 + C16:0, while in mixtures of 3 FA, the greatest activation was caused by combinations of C12:0 with C16:0 and either C18:0, C16:1, or C18:1. Some mixtures display a synergistic effect that leads to PPAR activation greater than the sum of their parts, which may be explained by structural dynamics within the PPAR ligand-binding pocket. Our results provide fundamental information for the development of tailored dietary plans that focus on the use of FA mixtures for nutrigenomic purposes.


Subject(s)
Energy Intake/genetics , Fatty Acids/metabolism , Liver/metabolism , Peroxisome Proliferator-Activated Receptors/genetics , Adipose Tissue/metabolism , Animal Feed , Animals , Cattle , Fatty Acids/genetics , Fatty Acids/pharmacology , Female , Immunity/genetics , Lactation/drug effects , Lactation/genetics , Milk/metabolism , Nutrigenomics , Peroxisome Proliferator-Activated Receptors/metabolism
3.
J Anim Sci Biotechnol ; 11(1): 110, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33292523

ABSTRACT

High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.

4.
J Dairy Res ; 87(4): 416-423, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33168108

ABSTRACT

The study included two experiments. In the first, 24 lactating Saanen dairy goats received low-energy diet without vitamin supplements. Twelve goats received a daily IV injection of 2,4- thiazolidinedione (TZD), others received saline injection. A week later, 6 goats from each treatment were challenged with intramammary infusion (IMI) of saline (CTRL) or Streptococcus uberis. In the second experiment, 12 Saanen lactating dairy goats received supplemental vitamins to reach NRC recommendation level. Six goats in each group were injected with TZD or saline daily, and 14 d later received Streptococcus uberis IMI in the right half of the udder. The hypotheses were (1) TZD does not affect the level of retinol in blood, and (2) the fatty acid profile is affected by the interaction between mammary infection and TZD in dairy goats. In the first experiment blood samples were collected on d -7, -2, 1, 2, 12 and milk samples were collected on d -8, 1, 4, 7, and 12, both relative to IMI. In the second experiment, blood samples were collected on d -15, 0, 1, and 10 relative to IMI. Milk and serum samples were analyzed for retinol, α-tocopherol and fatty acid profile. Serum retinol and ß-carotene concentrations were higher in the second experiment compared to the first. Serum ß-carotene and α-tocopherol were greater in TZD than CTRL and there was a TZD × time interaction in the first experiment. In addition, the TZD × time interaction showed that the milk fatty acid were reduced in C16 : 0 while C18 : 3 n3 while total omega 3 fatty acids were increased, as well as with minor effect on preventing a transient increase in α-tocopherol in milk. Overall, the TZD may affect the lipid-soluble vitamins and fatty acid profile, potentially altering immune responses, during mastitis in dairy goats.


Subject(s)
Goat Diseases/microbiology , Mastitis/veterinary , Streptococcal Infections/veterinary , Streptococcus , Thiazolidinediones/pharmacology , Vitamin A/blood , Animals , Fatty Acids/chemistry , Fatty Acids/metabolism , Female , Goats , Hypoglycemic Agents/pharmacology , Mastitis/microbiology , Milk/chemistry , Streptococcal Infections/microbiology , Vitamin A/administration & dosage , Vitamin A/pharmacology , alpha-Tocopherol/blood , beta Carotene/blood
5.
J Dairy Res ; 87(S1): 13-19, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33213582

ABSTRACT

Animal welfare is an essential component of dairy production and several systems exist to evaluate the welfare of dairy cows. Here, we review and compare three well-known systems that operate at farm level from around the world (FARM, Welfare Quality®, and The Code of Welfare) and discuss their advantages and limitations. Despite having some commonalities, the programs evaluate different elements. We also briefly review an emerging system (Integrated Diagnostic Welfare System) that might address some of the shortcomings of the existing systems, especially the possibility of automating the evaluation of animal well-being and identifying any cause of poor welfare. None of the aforementioned systems has been fully validated for their ability to assess animal welfare using independent measurements. The future holds increased attention around the well-being of dairy cows and increased use of sensing technologies. There is an urgent need for dairy welfare evaluation systems that are scientifically validated, holistic, and that can take advantage of the use of sensing technologies to continuously monitor animal welfare.


Subject(s)
Animal Welfare , Cattle , Dairying/methods , Farms , Program Evaluation , Animal Husbandry/ethics , Animal Husbandry/methods , Animals , Dairying/ethics , European Union , Female , New Zealand
6.
J Dairy Res ; 87(2): 184-190, 2020 May.
Article in English | MEDLINE | ID: mdl-32295653

ABSTRACT

The hypothesis of the study was that feeding a relatively low amount of Se biofortified alfalfa hay during the dry period and early lactation would improve selenium status and glutathione peroxidase activity in dairy cows and their calves. Ten Jersey and 8 Holstein primiparous dairy cows were supplemented with Se biofortified (TRT; n = 9) or non-biofortified (CTR; n = 9) alfalfa hay at a rate of 1 kg/100 kg of BW mixed with the TMR from 40 d prior parturition to 2 weeks post-partum. Se concentration in whole blood, liver, milk, and colostrum, the transfer of Se to calves, and the glutathione peroxidase (GPx) activity were assessed. TRT had 2-fold larger (P < 0.05) Se in blood v. CTR that resulted in larger Se in liver and colostrum but not milk and larger GPx activity in plasma and erythrocytes but not in milk. Compared to CTR, calves from TRT had larger Se in blood but only a numerical (P = 0.09) larger GPx activity in plasma. A positive correlation was detected between Se in the blood and GPx activity in erythrocytes and plasma in cows. Our results demonstrated that feeding pregnant primiparous dairy cows with a relatively low amount of Se-biofortified alfalfa hay is an effective way to increase Se in the blood and liver, leading to greater antioxidant activity via GPx. The same treatment was effective in improving Se concentration in calves but had a modest effect on their GPx activity. Feeding Se biofortified hay increased Se concentration in colostrum but not in milk.


Subject(s)
Animals, Newborn/metabolism , Cattle/physiology , Glutathione Peroxidase/metabolism , Medicago sativa/chemistry , Postpartum Period/physiology , Selenium/administration & dosage , Animal Feed/analysis , Animals , Colostrum/chemistry , Colostrum/enzymology , Erythrocytes/enzymology , Female , Food, Fortified , Glutathione Peroxidase/blood , Liver/chemistry , Milk/chemistry , Milk/enzymology , Nutritional Status , Pregnancy , Selenium/analysis , Selenium/pharmacokinetics
7.
PLoS One ; 14(10): e0222404, 2019.
Article in English | MEDLINE | ID: mdl-31600212

ABSTRACT

Conjugated linoleic acid was detected in rabbit caecotrophs, due to the presence of microbial lipid activity in rabbit cecum. However, the effect of CLA as a functional food in growing rabbit is not well established. Therefore, this study was conducted to determine the effect of CLA on production, meat quality, and its nutrigenomic effect on edible parts of rabbit carcass including skeletal muscle, liver, and adipose tissue. Therefore, seventy five weaned V-Line male rabbits, 30 days old, were randomly allocated into three dietary treatments receiving either basal control diet, diet supplemented with 0.5% (CLAL), or 1% CLA (CLAH). Total experimental period (63 d) was segmented into 7 days adaptation and 56 days experimental period. Dietary supplementation of CLA did not alter growth performance, however, the fat percentage of longissimus lumborum muscle was decreased, with an increase in protein and polyunsaturated fatty acids (PUFA) percentage. Saturated fatty acids (SFA) and mono unsaturated fatty acids (MUFA) were not increased in CLA treated groups. There was tissue specific sensing of CLA, since subcutaneous adipose tissue gene expression of PPARA was downregulated, however, CPT1A tended to be upregulated in liver of CLAL group only (P = 0.09). In skeletal muscle, FASN and PPARG were upregulated in CLAH group only (P ≤0.01). Marked cytoplasmic vacuolation was noticed in liver of CLAH group without altering hepatocyte structure. Adipocyte size was decreased in CLA fed groups, in a dose dependent manner (P <0.01). Cell proliferation determined by PCNA was lower (P <0.01) in adipose tissue of CLA groups. Our data indicate that dietary supplementation of CLA (c9,t11-CLA and t10,c12- CLA) at a dose of 0.5% in growing rabbit diet produce rabbit meat rich in PUFA and lower fat % without altering growth performance and hepatocyte structure.


Subject(s)
Diet , Fatty Acids, Unsaturated/metabolism , Linoleic Acids, Conjugated/pharmacology , Muscle, Skeletal/metabolism , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Body Composition/drug effects , Dietary Supplements , Fatty Acids/metabolism , Humans , Lipids/analysis , Liver/metabolism , Meat/analysis , Muscle, Skeletal/drug effects , Nutrigenomics , Rabbits , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism
8.
Vet Sci ; 6(2)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195666

ABSTRACT

In a prior experiment, treatment of goats with the putative PPARγ agonist 2,4-thiazolidinedione (2,4-TZD) ameliorated the response to intramammary infection without evidence of PPARγ activation. The lack of PPARγ activation was possibly due to deficiency of vitamin A and/or a poor body condition of the animals. Therefore, the present study hypothesized that activation of PPARγ by 2,4-TZD in goats supplemented with adequate amounts of vitamin A can improve the response to sub-clinical mastitis. Lactating goats receiving a diet that met National Research Council requirements, including vitamin A, were injected with 8 mg/kg BW of 2,4-TZD (n = 6) or saline (n = 6; control (CTR)) daily. Two weeks into treatment, all goats received Streptococcus uberis (IMI) in the right mammary gland. Blood biomarkers of metabolism, inflammation, and oxidative status plus leukocytes phagocytosis were measured. Mammary epithelial cells (MEC) and macrophages were isolated from milk and liver tissue collected for gene expression analysis. Milk fat was maintained by treatment with 2,4-TZD, but decreased in CTR, after IMI. Haptoglobin was increased after IMI only in 2,4-TZD without any effect on negative acute phase proteins, indicating an improved liver function. 2,4-TZD vs. CTR had a greater amount of globulin. The expression of inflammation-related genes was increased by IMI in both macrophages and MEC. Except for decreasing expression of SCD1 in MEC, 2,4-TZD did not affect the expression of measured genes. Results confirmed the successful induction of sub-clinical mastitis but did not confirm the positive effect of 2,4-TZD on the response to IMI in well-fed goats.

9.
Vet Sci ; 6(1)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857190

ABSTRACT

Flaxseed is rich in α-linolenic acid and is used in broiler chicken diets to enrich tissues with n-3 fatty acids (FA). However, non-starch polysaccharides (NSP) in flaxseed decreases nutrient digestibility and limits the availability of n-3 FA. Addition of carbohydrase enzymes to flaxseed-based diets can decrease the anti-nutritive effects of NSP. We hypothesized that flaxseed and enzyme supplementation affect lipid content and alter expression of genes related to lipid metabolism in broiler liver. Five day-old broiler chicks were fed a corn-soybean basal diet with 0% flaxseed, a basal diet with 10% of flaxseed, or 10% flaxseed + 0.05% enzyme diet up to day 42 of growth. Total lipids, including long-chain (≥20C) n-3 FA and monounsaturated FA, were increased in flax-fed broiler livers. Enzyme addition reduced arachidonic acid and total long chain n-6 FA. These changes were similarly reflected in phosphatidylcholine lipid species. Dietary flax and enzyme treatments up-regulated PPARα target genes CPT1A and ACOX1 while reducing expression of de novo FA synthesis-related genes. This study concludes that flaxseed and enzyme supplementation in broiler diets enhances LC n-3 FA species, while reducing n-6 FA species in hepatic phospholipids (PL). Flaxseed-based diets changes the expression of genes involved in FA lipid metabolism without affecting growth or production performance in broilers.

10.
Animals (Basel) ; 10(1)2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31888021

ABSTRACT

The objective of this study was to determine the effect of long-term supplementation of unsaturated oil on lipid metabolism and transcription of genes involved in lipid metabolism in subcutaneous adipose tissue (SAT) of mid-lactating dairy cows. The objective was achieved by supplementing dairy cows with soybean oil (SO; high in linoleic acid) or fish oil (FO; high in EPA and DHA) for 63 days (nine weeks). Cows were fed a control diet with no added lipid, or diets containing SO or FO (n = 5 cows/group). At the onset of the experiment (day 0) and on days 21, 42, and 63 of supplementation, blood and SAT samples were collected from each animal. Oil supplementation increased cholesterol and NEFA in plasma, with a greater effect of SO compared to FO. Concentration of BUN was lower in SO compared to control and FO at the end of the trial. Transcription of few genes was affected by dietary lipids: FABP4 had lowest expression in FO followed by SO and control. ACACA and FASN had higher expression in FO. Transcription of SCAP was higher but expression of INSIG1 was lower in SO. Overall, results revealed that compared to control, SO and FO had lipogenic effect in SAT.

11.
Annu Rev Anim Biosci ; 1: 365-92, 2013 Jan.
Article in English | MEDLINE | ID: mdl-25387024

ABSTRACT

Microarray development changed the way biologists approach the holistic study of cells and tissues. In dairy cattle biosciences, the application of omics technology, from spotted microarrays to next-generation sequencing and proteomics, has grown steadily during the past 10 years. Omics has found application in fields such as dairy cattle nutritional physiology, reproduction, and immunology. Generating biologically meaningful data from omics studies relies on bioinformatics tools. Both are key components of the systems physiology toolbox, which allows study of the interactions between a condition (e.g., nutrition, physiological state) with tissue gene/protein expression and the associated changes in biological functions. The nature of physiologic and metabolic adaptations in dairy cattle at any stage of the life cycle is multifaceted, involves multiple tissues, and is dynamic, e.g., the transition from late-pregnancy to lactation. Application of integrative systems physiology in periparturient dairy cattle has already advanced knowledge of the simultaneous functional adaptations in liver, adipose, and mammary tissue.


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Cattle/genetics , Cattle/physiology , Genomics , Animals , Dairying , Female
12.
Br J Nutr ; 107(2): 179-91, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21729373

ABSTRACT

Madin-Darby Bovine Kidney cells cultured with 150 µm of Wy-14 643 (WY, PPARα agonist) or twelve long-chain fatty acids (LCFA; 16 : 0, 18 : 0, cis-9-18 : 1, trans-10-18 : 1, trans-11-18 : 1, 18 : 2n-6, 18 : 3n-3, cis-9, trans-11-18 : 2, trans-10, cis-12-18 : 2, 20 : 0, 20 : 5n-3 and 22 : 6n-3) were used to uncover PPAR-α target genes and determine the effects of LCFA on expression of thirty genes with key functions in lipid metabolism and inflammation. Among fifteen known PPAR-α targets in non-ruminants, ten had greater expression with WY, suggesting that they are bovine PPAR-α targets. The expression of SPP1 and LPIN3 was increased by WY, with no evidence of a similar effect in the published literature, suggesting that both represent bovine-specific PPAR-α targets. We observed the strongest effect on the expression of PPAR-α targets with 16 : 0, 18 : 0 and 20 : 5n-3.When considering the overall effect on expression of the thirty selected genes 20 : 5n-3, 16 : 0 and 18 : 0 had the greatest effect followed by 20 : 0 and c9t11-18 : 2. Gene network analysis indicated an overall increase in lipid metabolism by WY and all LCFA with a central role of PPAR-α but also additional putative transcription factors. A greater increase in the expression of inflammatory genes was observed with 16 : 0 and 18 : 0. Among LCFA, 20 : 5n-3, 16 : 0 and 18 : 0 were the most potent PPAR-α agonists. They also affected the expression of non-PPAR-α targets, eliciting an overall increase in the expression of genes related to lipid metabolism, signalling and inflammatory response. Data appear to highlight a teleological evolutionary adaptation of PPAR in ruminants to cope with the greater availability of saturated rather than unsaturated LCFA.


Subject(s)
Cattle , Fatty Acids/metabolism , Gene Expression Regulation , Lipid Metabolism , Nutrigenomics/methods , PPAR alpha/metabolism , Signal Transduction , Animals , Cell Line , Dietary Fats/metabolism , Fatty Acids/chemistry , Fatty Acids, Unsaturated/metabolism , Gene Expression Profiling/veterinary , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Lipid Metabolism/drug effects , Models, Molecular , PPAR alpha/agonists , PPAR alpha/chemistry , Peroxisome Proliferators/pharmacology , Protein Conformation , Pyrimidines/pharmacology , RNA, Messenger/metabolism , Response Elements , Signal Transduction/drug effects , Trans Fatty Acids/metabolism
13.
J Mammary Gland Biol Neoplasia ; 16(4): 305-22, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21968536

ABSTRACT

Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal's productive life.


Subject(s)
Adaptation, Physiological , Bacterial Infections/genetics , Bacterial Infections/veterinary , Mammary Glands, Human/physiology , Mastitis/genetics , Mastitis/immunology , Transcriptome , Animals , Bacterial Infections/immunology , Cattle , Female , Humans , Immunity, Innate , Mammary Glands, Human/microbiology , Mastitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL