Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biophys J ; 95(1): 203-14, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18339742

ABSTRACT

Solid-state (2)H-NMR of [(2)H(31)]-N-palmitoylsphingomyelin ([(2)H(31)]16:0SM, PSM*), supplemented by differential scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE, POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE, PDPE) and cholesterol. When compared with (2)H-NMR data for analogous mixtures of [(2)H(31)]16:0-18:1PE (POPE*) or [(2)H(31)]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains <20 nm in size are formed in the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA--but not for OA--excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft) domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane domains.


Subject(s)
Docosahexaenoic Acids/chemistry , Hydrogen/chemistry , Lipid Bilayers/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Complex Mixtures/chemistry , Computer Simulation , Models, Molecular
2.
J Virol ; 78(19): 10556-65, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15367622

ABSTRACT

Lipid rafts are enriched in cholesterol and sphingomyelin and are isolated on the basis of insolubility in detergents, such as Brij 98 and Triton X-100. Recent work by Holm et al. has shown that rafts insoluble in Brig 98 can be found in human immunodeficiency virus type 1 (HIV-1) virus-like particles, although it is not known whether raft-like structures are present in authentic HIV-1 and it is unclear whether a virion-associated raft-like structure is required for HIV replication. Independently, it was previously reported that virion-associated cholesterol is critical for HIV-1 infectivity, although the specific requirement of virion cholesterol in HIV-1 was not examined. In the present study, we have demonstrated that infectious wild-type HIV-1 contains Brij 98 rafts but only minimal amounts of Triton X-100 rafts. To directly assess the functional requirement of virion-associated rafts and various features of cholesterol on HIV-1 replication, we replaced virion cholesterol with exogenous cholesterol analogues that have demonstrated either raft-promoting or -inhibiting capacity in model membranes. We observed that variable concentrations of exogenous analogues are required to replace a defined amount of virion-associated cholesterol, showing that structurally diverse cholesterol analogues have various affinities toward HIV-1. We found that replacement of 50% of virion cholesterol with these exogenous cholesterol analogues did not eliminate the presence of Brij 98 rafts in HIV-1. However, the infectivity levels of the lipid-modified HIV-1s directly correlate with the raft-promoting capacities of these cholesterol analogues. Our data provide the first direct assessment of virion-associated Brij 98 rafts in retroviral replication and illustrate the importance of the raft-promoting property of virion-associated cholesterol in HIV-1 replication.


Subject(s)
Cholesterol/physiology , HIV-1/chemistry , HIV-1/physiology , Membrane Lipids/physiology , Membrane Microdomains/physiology , Virion/chemistry , Centrifugation, Density Gradient , Humans , Immunoblotting , Lipids/analysis , Membrane Microdomains/chemistry , Octoxynol , Plant Oils , Polyethylene Glycols , Viral Proteins/analysis , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL