Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Complementary Medicines
Database
Language
Affiliation country
Publication year range
1.
Endocrinology ; 150(5): 2342-50, 2009 May.
Article in English | MEDLINE | ID: mdl-19164468

ABSTRACT

26RFa is a hypothalamic RFamide neuropeptide that was identified as the endogenous ligand of the orphan G protein-coupled receptor, GPR103, and that stimulates appetite in mice. Up until now, the mechanism of action of 26RFa in the hypothalamic control of food intake remains unknown. The high density of GPR103 in the arcuate nucleus (Arc) prompted us to investigate, in the present study, the effects of 26RFa on the rat neuropeptide Y (NPY)/proopiomelanocortin (POMC) system. Intracerebroventricular injection of 26RFa stimulated NPY expression and release in the basal hypothalamus, whereas it decreased POMC expression and alpha-MSH release, and these effects were associated with an increase in food intake. A double in situ hybridization procedure indicated that the 26RFa receptor is present in NPY neurons of the Arc, but not in POMC neurons. Central administration of NPY Y1 and Y5 receptor antagonists abolished the inhibitory effects of 26RFa on POMC expression and alpha-MSH release, and reversed 26RFa-induced food consumption. Finally, 26RFa antagonized the effects of leptin on NPY expression and release, POMC expression and alpha-MSH release, and food intake. Altogether, the present data demonstrate for the first time that 26RFa exerts its orexigenic activity by stimulating the release of NPY in the Arc, which in turn inhibits POMC neurons by activating the Y1 and Y5 receptors. It is also suggested that the balance 26RFa/leptin is an important parameter in the maintenance of energy homeostasis.


Subject(s)
Appetite Regulation/drug effects , Arcuate Nucleus of Hypothalamus/physiology , Neuropeptide Y/metabolism , Neuropeptides/pharmacology , Pro-Opiomelanocortin/metabolism , Animals , Appetite Regulation/genetics , Arcuate Nucleus of Hypothalamus/drug effects , Arcuate Nucleus of Hypothalamus/metabolism , Eating/drug effects , Eating/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation/drug effects , Hypothalamic Hormones/administration & dosage , Hypothalamic Hormones/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Injections, Intraventricular , Leptin/metabolism , Male , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Neuropeptide Y/genetics , Neuropeptide Y/physiology , Neuropeptides/administration & dosage , Pro-Opiomelanocortin/physiology , Rats , Rats, Wistar , alpha-MSH/metabolism
2.
Neuropsychopharmacology ; 34(2): 424-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18536705

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the proopiomelanocortin (POMC)-derived peptide, alpha-melanocyte-stimulating hormone (alpha-MSH), exert anorexigenic activities. While alpha-MSH is known to inhibit food intake and stimulate catabolism via activation of the central melanocortin-receptor MC4-R, little is known regarding the mechanism by which PACAP inhibits food consumption. We have recently found that, in the arcuate nucleus of the hypothalamus, a high proportion of POMC neurons express PACAP receptors. This observation led us to investigate whether PACAP may inhibit food intake through a POMC-dependent mechanism. In mice deprived of food for 18 h, intracerebroventricular administration of PACAP significantly reduced food intake after 30 min, and this effect was reversed by the PACAP antagonist PACAP6-38. In contrast, vasoactive intestinal polypeptide did not affect feeding behavior. Pretreatment with the MC3-R/MC4-R antagonist SHU9119 significantly reduced the effect of PACAP on food consumption. Central administration of PACAP induced c-Fos mRNA expression and increased the proportion of POMC neuron-expressing c-Fos mRNA in the arcuate nucleus. Furthermore, PACAP provoked an increase in POMC and MC4-R mRNA expression in the hypothalamus, while MC3-R mRNA level was not affected. POMC mRNA level in the arcuate nucleus of PACAP-specific receptor (PAC1-R) knock-out mice was reduced as compared with wild-type animals. Finally, i.c.v. injection of PACAP provoked a significant increase in plasma glucose level. Altogether, these results indicate that PACAP, acting through PAC1-R, may inhibit food intake via a melanocortin-dependent pathway. These data also suggest a central action of PACAP in the control of glucose metabolism.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/drug effects , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pro-Opiomelanocortin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Blood Glucose/analysis , Corticosterone/blood , Dose-Response Relationship, Drug , Eating/physiology , Hypothalamus/drug effects , Male , Melanocyte-Stimulating Hormones/pharmacology , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Neuropeptide Y/metabolism , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/antagonists & inhibitors , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 3/antagonists & inhibitors , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Vasoactive Intestinal Peptide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL