Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Sports Sci ; 40(23): 2585-2594, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36759944

ABSTRACT

The purpose of this study was to investigate effects of concurrent and independent administration of dietary nitrate (NO3-), administered as NO3--rich beetroot juice (BR; ~12.4 mmol of NO3-), and N-acetylcysteine (NAC; 70 mg·kg-1) on physiological responses during prolonged exercise and subsequent high-intensity exercise tolerance. Sixteen recreationally active males supplemented with NO3--depleted beetroot juice (PL) or BR for 6 days and ingested an acute dose of NAC or maltodextrin (MAL) 1 h prior to performing 1 h of heavy-intensity cycling exercise immediately followed by a severe-intensity time-to-exhaustion (TTE) test in four conditions: 1) PL+MAL, 2) PL+NAC, 3) BR+MAL and 4) BR+NAC. Pre-exercise plasma [NO3-] and nitrite ([NO2-]) were elevated following BR+NAC  and BR+MAL (both P < 0.01) compared with PL+NAC and PL+MAL; plasma [cysteine] was increased in PL+NAC  and BR+NAC (both P < 0.01) compared to PL+MAL. Muscle excitability declined over time during the prolonged cycling bout in all conditions  but was better preserved in PL+NAC  compared to BR+NAC (P < 0.01) and PL+MAL (P < 0.05). There was no effect of supplementation on subsequent TTE . These findings indicate that co-ingestion of BR and NAC does not appreciably alter physiological responses during prolonged heavy-intensity cycling or enhance subsequent exercise tolerance.


Subject(s)
Acetylcysteine , Dietary Supplements , Exercise , Fruit and Vegetable Juices , Nitrates , Plant Extracts , Humans , Male , Exercise/physiology , Nitrates/blood , Acetylcysteine/administration & dosage , Antioxidants/administration & dosage , Cross-Over Studies , Reactive Oxygen Species , Endurance Training , Oxygen Consumption/physiology , Nitrites/blood , Adult , Plant Extracts/pharmacology , Plant Roots
2.
J Physiol ; 599(23): 5203-5214, 2021 12.
Article in English | MEDLINE | ID: mdl-34587650

ABSTRACT

Dietary nitrate supplementation has been shown to reduce pulmonary O2 uptake during submaximal exercise and enhance exercise performance. However, the effects of nitrate supplementation on local metabolic and haemodynamic regulation in contracting human skeletal muscle remain unclear. To address this, eight healthy young male sedentary subjects were assigned in a randomized, double-blind, crossover design to receive nitrate-rich beetroot juice (NO3, 9 mmol) and placebo (PLA) 2.5 h prior to the completion of a double-step knee-extensor exercise protocol that included a transition from unloaded to moderate-intensity exercise (MOD) followed immediately by a transition to intense exercise (HIGH). Compared with PLA, NO3 increased plasma levels of nitrate and nitrite. During MOD, leg V̇O2 and leg blood flow (LBF) were reduced to a similar extent (∼9%-15%) in NO3. During HIGH, leg V̇O2 was reduced by ∼6%-10% and LBF by ∼5%-9% (did not reach significance) in NO3. Leg V̇O2 kinetics was markedly faster in the transition from passive to MOD compared with the transition from MOD to HIGH both in NO3 and PLA with no difference between PLA and NO3. In NO3, a reduction in nitrate and nitrite concentration was detected between arterial and venous samples. No difference in the time to exhaustion was observed between conditions. In conclusion, elevation of plasma nitrate and nitrate reduces leg skeletal muscle V̇O2 and blood flow during exercise. However, nitrate supplementation does not enhance muscle V̇O2 kinetics during exercise, nor does it improve time to exhaustion when exercising with a small muscle mass. KEY POINTS: Dietary nitrate supplementation has been shown to reduce systemic O2 uptake during exercise and improve exercise performance. The effects of nitrate supplementation on local metabolism and blood flow regulation in contracting human skeletal muscle remain unclear. By using leg exercise engaging a small muscle mass, we show that O2 uptake and blood flow are similarly reduced in contracting skeletal muscle of humans during exercise. Despite slower V̇O2 kinetics in the transition from moderate to intense exercise, no effects of nitrate supplementation were observed for V̇O2 kinetics and time to exhaustion. Nitrate and nitrite concentrations are reduced across the exercising leg, suggesting that these ions are extracted from the arterial blood by contracting skeletal muscle.


Subject(s)
Beta vulgaris , Nitrates , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Eating , Hemodynamics , Humans , Male , Muscle, Skeletal/metabolism , Nitrates/metabolism , Nitrites/metabolism , Oxygen Consumption
3.
Nutrients ; 13(8)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34444928

ABSTRACT

Given the importance of exercise economy to endurance performance, we implemented two strategies purported to reduce the oxygen cost of exercise within a 4 week training camp in 21 elite male race walkers. Fourteen athletes undertook a crossover investigation with beetroot juice (BRJ) or placebo (PLA) [2 d preload, 2 h pre-exercise + 35 min during exercise] during a 26 km race walking at speeds simulating competitive events. Separately, 19 athletes undertook a parallel group investigation of a multi-pronged strategy (MAX; n = 9) involving chronic (2 w high carbohydrate [CHO] diet + gut training) and acute (CHO loading + 90 g/h CHO during exercise) strategies to promote endogenous and exogenous CHO availability, compared with strategies reflecting lower ranges of current guidelines (CON; n = 10). There were no differences between BRJ and PLA trials for rates of CHO (p = 0.203) or fat (p = 0.818) oxidation or oxygen consumption (p = 0.090). Compared with CON, MAX was associated with higher rates of CHO oxidation during exercise, with increased exogenous CHO use (CON; peak = ~0.45 g/min; MAX: peak = ~1.45 g/min, p < 0.001). High rates of exogenous CHO use were achieved prior to gut training, without further improvement, suggesting that elite athletes already optimise intestinal CHO absorption via habitual practices. No differences in exercise economy were detected despite small differences in substrate use. Future studies should investigate the impact of these strategies on sub-elite athletes' economy as well as the performance effects in elite groups.


Subject(s)
Beta vulgaris , Dietary Carbohydrates/administration & dosage , Dietary Supplements , Fruit and Vegetable Juices , Walking/physiology , Adult , Athletes , Humans , Male , Oxidation-Reduction , Oxygen Consumption
4.
J Appl Physiol (1985) ; 129(3): 474-482, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32702277

ABSTRACT

Sickle cell disease (SCD) causes exercise intolerance likely due to impaired skeletal muscle function and low nitric oxide (NO) bioavailability. Dietary nitrate improves hemodynamic and metabolic control during exercise in humans and animals. The purpose of this investigation was to assess the impact of nitrate supplementation on exercise capacity as measured by the running speed to exercise duration relationship [critical speed (CS)]in mice with SCD. We tested the hypothesis that nitrate supplementation via beetroot juice (BR) would attenuate the exercise intolerance observed in mice with SCD. Ten wild-type (WT) and 18 Berkley sickle-cell mice (BERK) received water (WT: n = 10, BERK: n = 10) or nitrate-rich BR (BERK+BR: n = 8, nitrate dose 1 mmol/kg/day) for 5 days. Following the supplementation period, all mice performed 3-5 constant-speed treadmill tests that resulted in exhaustion within 1.5 to 20 min. Time to exhaustion vs. treadmill speed was fit to a hyperbolic model to determine CS. CS was significantly lower in BERK vs. WT and BERK+BR with no significant difference between WT and BERK+BR (WT: 36.6 ± 1.6, BERK: 23.8 ± 1.5, BERK+BR: 31.1 ± 2.1 m/min, P < 0.05). Exercise tolerance, measured via CS, was significantly lower in BERK mice relative to WT. However, BERK mice receiving 5 days of nitrate supplementation exhibited no difference in exercise tolerance when compared with WT. These results support the potential utility of a dietary nitrate intervention to improve functionality in SCD patients.NEW & NOTEWORTHY Sickle cell disease compromises muscle O2 delivery resulting in exercise intolerance. Dietary nitrate supplementation increases skeletal muscle blood flow during exercise and may improve exercise capacity in a mouse model of sickle cell disease. We investigated the effects of dietary nitrate supplementation on exercise tolerance in a mouse model of sickle cell disease using the treadmill speed-duration relationship (critical speed). Mice with sickle cell disease provided with a dietary nitrate supplement had a critical speed not significantly different from healthy wild-type mice.


Subject(s)
Anemia, Sickle Cell , Beta vulgaris , Anemia, Sickle Cell/drug therapy , Animals , Dietary Supplements , Double-Blind Method , Exercise Tolerance , Humans , Mice , Nitrates , Oxygen Consumption
5.
Environ Manage ; 62(6): 1007-1024, 2018 12.
Article in English | MEDLINE | ID: mdl-30171327

ABSTRACT

The persistence of freshwater degradation has necessitated the growth of an expansive stream and wetland restoration industry, yet restoration prioritization at broad spatial extents is still limited and ad-hoc restoration prevails. The River Basin Restoration Prioritization tool has been developed to incorporate vetted, distributed data models into a catchment scale restoration prioritization framework. Catchment baseline condition and potential improvement with restoration activity is calculated for all National Hydrography Dataset stream reaches and catchments in North Carolina and compared to other catchments within the river subbasin to assess where restoration efforts may best be focused. Hydrologic, water quality, and aquatic habitat quality conditions are assessed with peak flood flow, nitrogen and phosphorus loading, and aquatic species distribution models. The modular nature of the tool leaves ample opportunity for future incorporation of novel and improved datasets to better represent the holistic health of a watershed, and the nature of the datasets used herein allow this framework to be applied at much broader scales than North Carolina.


Subject(s)
Big Data , Conservation of Water Resources , Rivers/chemistry , Ecosystem , Environmental Monitoring , Hydrology , Nitrogen/analysis , North Carolina , Phosphorus/analysis , Water Quality , Wetlands
6.
Free Radic Biol Med ; 124: 21-30, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29807159

ABSTRACT

Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO3-)-nitrite (NO2-)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO3- to NO2-. NO (generated from both NO2- and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO3- (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) normotensive humans (n = 18). NO3- supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P < 0.05). After NO3-supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P < 0.05). NO3- supplementation increased plasma concentration of NO2- and reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO2-] in response to NO3- supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO3-, and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo.


Subject(s)
Blood Pressure , Dietary Supplements , Homeostasis , Microbiota , Nitric Oxide/metabolism , Saliva/microbiology , Vascular Stiffness/drug effects , Adolescent , Adult , Aged , Bacteria/drug effects , Cross-Over Studies , Double-Blind Method , Female , Humans , Male , Middle Aged , Nitrates/metabolism , Nitrites/metabolism , RNA, Ribosomal, 16S , Retrospective Studies , Saliva/drug effects , Saliva/metabolism , Vascular Stiffness/physiology , Young Adult
7.
J Appl Physiol (1985) ; 124(6): 1519-1528, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29494294

ABSTRACT

The physiological and exercise performance adaptations to sprint interval training (SIT) may be modified by dietary nitrate ([Formula: see text]) supplementation. However, it is possible that different types of [Formula: see text] supplementation evoke divergent physiological and performance adaptations to SIT. The purpose of this study was to compare the effects of 4-wk SIT with and without concurrent dietary [Formula: see text] supplementation administered as either [Formula: see text]-rich beetroot juice (BR) or potassium [Formula: see text] (KNO3). Thirty recreationally active subjects completed a battery of exercise tests before and after a 4-wk intervention in which they were allocated to one of three groups: 1) SIT undertaken without dietary [Formula: see text] supplementation (SIT); 2) SIT accompanied by concurrent BR supplementation (SIT + BR); or 3) SIT accompanied by concurrent KNO3 supplementation (SIT + KNO3). During severe-intensity exercise, V̇o2peak and time to task failure were improved to a greater extent with SIT + BR than SIT and SIT + KNO3 ( P < 0.05). There was also a greater reduction in the accumulation of muscle lactate at 3 min of severe-intensity exercise in SIT + BR compared with SIT + KNO3 ( P < 0.05). Plasma [Formula: see text] concentration fell to a greater extent during severe-intensity exercise in SIT + BR compared with SIT and SIT + KNO3 ( P < 0.05). There were no differences between groups in the reduction in the muscle phosphocreatine recovery time constant from pre- to postintervention ( P > 0.05). These findings indicate that 4-wk SIT with concurrent BR supplementation results in greater exercise capacity adaptations compared with SIT alone and SIT with concurrent KNO3 supplementation. This may be the result of greater NO-mediated signaling in SIT + BR compared with SIT + KNO3. NEW & NOTEWORTHY We compared the influence of different forms of dietary nitrate supplementation on the physiological and performance adaptations to sprint interval training (SIT). Compared with SIT alone, supplementation with nitrate-rich beetroot juice, but not potassium [Formula: see text], enhanced some physiological adaptations to training.


Subject(s)
Athletic Performance , Beta vulgaris , High-Intensity Interval Training , Muscle, Skeletal/drug effects , Nitrates/administration & dosage , Potassium Compounds/administration & dosage , Adult , Dietary Supplements , Drug Synergism , Female , Humans , Male , Young Adult
8.
J Appl Physiol (1985) ; 124(5): 1254-1263, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29357494

ABSTRACT

Nitrate-rich beetroot juice (BR) supplementation has been shown to increase biomarkers of nitric oxide availability with implications for the physiological responses to exercise. We hypothesized that BR supplementation before and during prolonged moderate-intensity exercise would maintain an elevated plasma nitrite concentration ([[Formula: see text]]), attenuate the expected progressive increase in V̇o2 over time, and improve performance in a subsequent time trial (TT). In a double-blind, randomized, crossover design, 12 men completed 2 h of moderate-intensity cycle exercise followed by a 100-kJ TT in three conditions: 1) BR before and 1 h into exercise (BR + BR); 2) BR before and placebo (PL) 1 h into exercise (BR + PL); and 3) PL before and 1 h into exercise (PL + PL). During the 2-h moderate-intensity exercise bout, plasma [[Formula: see text]] declined by ~17% in BR + PL but increased by ~8% in BR + BR such that, at 2 h, plasma [[Formula: see text]] was greater in BR + BR than both BR + PL and PL + PL ( P < 0.05). V̇o2 was not different among conditions over the first 90 min of exercise but was lower at 120 min in BR + BR (1.73 ± 0.24 l/min) compared with BR + PL (1.80 ± 0.21 l/min; P = 0.08) and PL + PL (1.83 ± 0.27 l/min; P < 0.01). The decline in muscle glycogen concentration over the 2-h exercise bout was attenuated in BR + BR (~28% decline) compared with BR + PL (~44% decline) and PL + PL (~44% decline; n = 9, P < 0.05). TT performance was not different among conditions ( P > 0.05). BR supplementation before and during prolonged moderate-intensity exercise attenuated the progressive rise in V̇o2 over time and appeared to reduce muscle glycogen depletion but did not enhance subsequent TT performance. NEW & NOTEWORTHY We show for the first time that ingestion of nitrate during exercise preserves elevated plasma [nitrite] and negates the progressive rise in O2 uptake during prolonged moderate-intensity exercise.


Subject(s)
Beta vulgaris/chemistry , Biological Products/pharmacology , Exercise/physiology , Nitrites/pharmacology , Oxygen Consumption/drug effects , Oxygen/metabolism , Adult , Antioxidants/pharmacology , Beverages , Blood Pressure/drug effects , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Eating/physiology , Exercise Tolerance/drug effects , Humans , Male , Nitric Oxide/metabolism , Oxygen Consumption/physiology , Young Adult
9.
Nitric Oxide ; 63: 13-20, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28024935

ABSTRACT

Uptake of inorganic nitrate (NO3-) into the salivary circulation is a rate-limiting step for dietary NO3- metabolism in mammals. It has been suggested that salivary NO3- uptake occurs in competition with inorganic iodide (I-). Therefore, this study tested the hypothesis that I- supplementation would interfere with NO3- metabolism and blunt blood pressure reductions after dietary NO3- supplementation. Nine healthy adults (4 male, mean ± SD, age 20 ± 1 yr) reported to the laboratory for initial baseline assessment (control) and following six day supplementation periods with 140 mL·day-1 NO3--rich beetroot juice (8.4 mmol NO3-·day-1) and 198 mg potassium gluconate·day-1 (nitrate), and 140 mL·day-1 NO3--rich beetroot juice and 450 µg potassium iodide·day-1 (nitrate + iodide) in a randomized, cross-over experiment. Salivary [I-] was higher in the nitrate + iodide compared to the control and NIT trials (P < 0.05). Salivary and plasma [NO3-] and [NO2-] were higher in the nitrate and nitrate + iodide trials compared to the control trial (P < 0.05). Plasma [NO3-] was higher (474 ± 127 vs. 438 ± 117 µM) and the salivary-plasma [NO3-] ratio was lower (14 ± 6 vs. 20 ± 6 µM), indicative of a lower salivary NO3- uptake, in the nitrate + iodide trial compared to the nitrate trial (P < 0.05). Plasma and salivary [NO2-] were not different between the nitrate and nitrate + iodide trials (P > 0.05). Systolic blood pressure was lower than control (112 ± 13 mmHg) in the nitrate (106 ± 13 mmHg) and nitrate + iodide (106 ± 11 mmHg) trials (P < 0.05), with no differences between the nitrate and nitrate + iodide trials (P > 0.05). In conclusion, co-ingesting NO3- and I- perturbed salivary NO3- uptake, but the increase in salivary and plasma [NO2-] and the lowering of blood pressure were similar compared to NO3- ingestion alone. Therefore, increased dietary I- intake, which is recommended in several countries worldwide as an initiative to offset hypothyroidism, does not appear to compromise the blood pressure reduction afforded by increased dietary NO3- intake.


Subject(s)
Blood Pressure/drug effects , Dietary Supplements , Iodides/metabolism , Nitrates/metabolism , Arterial Pressure/drug effects , Beta vulgaris , Female , Fruit and Vegetable Juices , Humans , Iodides/administration & dosage , Male , Nitrates/administration & dosage , Nitrates/blood , Nitrites/blood , Nitrites/metabolism , Saliva/metabolism , Young Adult
10.
J Appl Physiol (1985) ; 122(3): 642-652, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-27909231

ABSTRACT

We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and [Formula: see text]-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and [Formula: see text]-rich beetroot juice (~13 mmol [Formula: see text]/day; SIT+BR); or 3) no training and [Formula: see text]-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT.NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training.


Subject(s)
Adaptation, Physiological/physiology , Dietary Supplements , High-Intensity Interval Training/methods , Muscle, Skeletal/physiology , Nitrates/administration & dosage , Oxygen Consumption/physiology , Running/physiology , Adaptation, Physiological/drug effects , Administration, Oral , Adult , Athletic Performance/physiology , Humans , Male , Muscle, Skeletal/drug effects , Oxygen/metabolism , Oxygen Consumption/drug effects , Task Performance and Analysis
11.
Nitric Oxide ; 59: 10-20, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27378312

ABSTRACT

This study tested the hypothesis that watermelon juice supplementation would improve nitric oxide bioavailability and exercise performance. Eight healthy recreationally-active adult males reported to the laboratory on two occasions for initial testing without dietary supplementation (control condition). Thereafter, participants were randomly assigned, in a cross-over experimental design, to receive 16 days of supplementation with 300 mL·day(-1) of a watermelon juice concentrate, which provided ∼3.4 g l-citrulline·day(-1) and an apple juice concentrate as a placebo. Participants reported to the laboratory on days 14 and 16 of supplementation to assess the effects of the interventions on blood pressure, plasma [l-citrulline], plasma [l-arginine], plasma [nitrite], muscle oxygenation and time-to-exhaustion during severe-intensity exercise. Compared to control and placebo, plasma [l-citrulline] (29 ± 4, 22 ± 6 and 101 ± 23 µM), [l-arginine] (74 ± 9, 67 ± 13 and 116 ± 9 µM) and [nitrite] (102 ± 29, 106 ± 21 and 201 ± 106 nM) were higher after watermelon juice supplementation (P < 0.01). However, systolic blood pressure was higher in the watermelon juice (130 ± 11) and placebo (131 ± 9) conditions compared to the control condition (124 ± 8 mmHg; P < 0.05). The skeletal muscle oxygenation index during moderate-intensity exercise was greater in the watermelon juice condition than the placebo and control conditions (P < 0.05), but time-to-exhaustion during the severe-intensity exercise test (control: 478 ± 80, placebo: 539 ± 108, watermelon juice: 550 ± 143 s) was not significantly different between conditions (P < 0.05). In conclusion, while watermelon juice supplementation increased baseline plasma [nitrite] and improved muscle oxygenation during moderate-intensity exercise, it increased resting blood pressure and did not improve time-to-exhaustion during severe-intensity exercise. These findings do not support the use of watermelon juice supplementation as a nutritional intervention to lower blood pressure or improve endurance exercise performance in healthy adults.


Subject(s)
Citrullus , Dietary Supplements , Fruit and Vegetable Juices , Nitric Oxide/analysis , Physical Endurance , Arginine/blood , Arterial Pressure , Blood Glucose/analysis , Citrulline/blood , Heart Rate , Humans , Lactic Acid/blood , Male , Malus , Nitrites/blood , Oxygen Consumption , Pulmonary Gas Exchange , Young Adult
12.
Physiol Behav ; 149: 149-58, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26037632

ABSTRACT

Nitrate derived from vegetables is consumed as part of a normal diet and is reduced endogenously via nitrite to nitric oxide. It has been shown to improve endothelial function, reduce blood pressure and the oxygen cost of sub-maximal exercise, and increase regional perfusion in the brain. The current study assessed the effects of dietary nitrate on cognitive performance and prefrontal cortex cerebral blood-flow (CBF) parameters in healthy adults. In this randomised, double-blind, placebo-controlled, parallel-groups study, 40 healthy adults received either placebo or 450 ml beetroot juice (~5.5 mmol nitrate). Following a 90 minute drink/absorption period, participants performed a selection of cognitive tasks that activate the frontal cortex for 54 min. Near-Infrared Spectroscopy (NIRS) was used to monitor CBF and hemodynamics, as indexed by concentration changes in oxygenated and deoxygenated-haemoglobin, in the frontal cortex throughout. The bioconversion of nitrate to nitrite was confirmed in plasma by ozone-based chemi-luminescence. Dietary nitrate modulated the hemodynamic response to task performance, with an initial increase in CBF at the start of the task period, followed by consistent reductions during the least demanding of the three tasks utilised. Cognitive performance was improved on the serial 3s subtraction task. These results show that single doses of dietary nitrate can modulate the CBF response to task performance and potentially improve cognitive performance, and suggest one possible mechanism by which vegetable consumption may have beneficial effects on brain function.


Subject(s)
Cerebral Cortex/blood supply , Cognition/physiology , Dietary Supplements , Hemodynamics/physiology , Hemoglobins/metabolism , Nitrates/administration & dosage , Adolescent , Adult , Affect , Analysis of Variance , Blood Pressure/physiology , Cognition/drug effects , Cross-Sectional Studies , Double-Blind Method , Female , Fruit and Vegetable Juices , Heart Rate/physiology , Humans , Male , Neuropsychological Tests , Nitrates/blood , Spectroscopy, Near-Infrared , Young Adult
13.
J Appl Physiol (1985) ; 119(4): 385-95, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26023227

ABSTRACT

The purpose of this study was to compare the effects of l-citrulline (Cit) and l-arginine (Arg) supplementation on nitric oxide (NO) biomarkers, pulmonary O2 uptake (V̇o2) kinetics, and exercise performance. In a randomized, placebo (Pla)-controlled, crossover study, 10 healthy adult men completed moderate- and severe-intensity cycling exercise on days 6 and 7 of a 7-day supplementation period with Pla, Arg (6 g/day), and Cit (6 g/day). Compared with Pla, plasma Arg concentration was increased by a similar magnitude with Arg and Cit supplementation, but plasma Cit concentration was only increased (P < 0.001) with Cit supplementation. Plasma nitrite (NO2 (-)) concentration was increased with Arg supplementation (P < 0.05) and tended to increase with Cit supplementation (P = 0.08) compared with Pla (83 ± 25, 106 ± 41, and 100 ± 38 nM with Pla, Arg, and Cit, respectively); however, mean arterial blood pressure was only lower (P < 0.05) after Cit supplementation. The steady-state V̇o2 amplitude during moderate-intensity cycle exercise was not significantly different between supplements, but Cit lowered the V̇o2 mean response time (59 ± 8 and 53 ± 5 s with Pla and Cit, respectively, P < 0.05) during severe-intensity exercise, improved tolerance to severe-intensity exercise (589 ± 101 and 661 ± 107 s with Pla and Cit, respectively), and increased the total amount of work completed in the exercise performance test (123 ± 18 and 125 ± 19 kJ with Pla and Cit, respectively, P < 0.05). These variables were not altered by Arg supplementation (P > 0.05). In conclusion, these results suggest that short-term Cit, but not Arg, supplementation can improve blood pressure, V̇o2 kinetics, and exercise performance in healthy adults.


Subject(s)
Arginine/administration & dosage , Citrulline/administration & dosage , Dietary Supplements , Exercise Tolerance/drug effects , Exercise , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Oxygen Consumption/drug effects , Performance-Enhancing Substances/administration & dosage , Administration, Oral , Adolescent , Arginine/blood , Bicycling , Biomarkers/blood , Blood Pressure/drug effects , Citrulline/blood , Cross-Over Studies , Double-Blind Method , England , Humans , Kinetics , Male , Muscle, Skeletal/metabolism , Nitric Oxide/metabolism , Performance-Enhancing Substances/blood , Spectroscopy, Near-Infrared , Treatment Outcome , Young Adult
14.
Int J Sports Physiol Perform ; 9(4): 615-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24085341

ABSTRACT

CONTEXT: Beetroot juice is a naturally rich source of inorganic nitrate (NO(3-)), a compound hypothesized to enhance endurance performance by improving exercise efficiency. PURPOSE: To investigate the effect of different doses of beetroot juice on 2000-m ergometer-rowing performance in highly trained athletes. METHODS: Ten highly trained male rowers volunteered to participate in a placebo-controlled, double-blinded crossover study. Two hours before undertaking a 2000-m rowing-ergometer test, subjects consumed beetroot juice containing 0 mmol (placebo), 4.2 mmol (SINGLE), or 8.4 mmol (DOUBLE) NO(3-). Blood samples were taken before supplement ingestion and immediately before the rowing test for analysis of plasma [NO(3-)] and [nitrite (NO(2-))]. RESULTS: The SINGLE dose demonstrated a trivial effect on time to complete 2000 m compared with placebo (mean difference: 0.2 ± 2.5 s). A possibly beneficial effect was found with DOUBLE compared with SINGLE (mean difference -1.8 ± 2.1 s) and with placebo (-1.6 ± 1.6 s). Plasma [NO(2-)] and [NO(3-)] demonstrated a dose-response effect, with greater amounts of ingested nitrate leading to substantially higher concentrations (DOUBLE > SINGLE > placebo). There was a moderate but insignificant correlation (r = -.593, P = .055) between change in plasma [NO(2-)] and performance time. CONCLUSION: Compared with nitratedepleted beetroot juice, a high (8.4 mmol NO(3-)) but not moderate (4.2 mmol NO(3-)) dose of NO(3-) in beetroot juice, consumed 2 h before exercise, may improve 2000-m rowing performance in highly trained athletes.


Subject(s)
Beta vulgaris , Beverages , Nitrates/administration & dosage , Performance-Enhancing Substances/administration & dosage , Physical Endurance/drug effects , Plant Extracts/administration & dosage , Sports , Administration, Oral , Cross-Over Studies , Dose-Response Relationship, Drug , Double-Blind Method , Exercise Test , Humans , Male , Nitrates/blood , Oxygen Consumption/drug effects , Performance-Enhancing Substances/blood , Plant Extracts/blood , Plant Roots , Task Performance and Analysis , Time Factors , Young Adult
15.
Am J Physiol Regul Integr Comp Physiol ; 305(12): R1441-50, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24089377

ABSTRACT

Recent research has suggested that dietary nitrate (NO3(-)) supplementation might alter the physiological responses to exercise via specific effects on type II muscle. Severe-intensity exercise initiated from an elevated metabolic rate would be expected to enhance the proportional activation of higher-order (type II) muscle fibers. The purpose of this study was, therefore, to test the hypothesis that, compared with placebo (PL), NO3(-)-rich beetroot juice (BR) supplementation would speed the phase II VO2 kinetics (τ(p)) and enhance exercise tolerance during severe-intensity exercise initiated from a baseline of moderate-intensity exercise. Nine healthy, physically active subjects were assigned in a randomized, double-blind, crossover design to receive BR (140 ml/day, containing ~8 mmol of NO3(-)) and PL (140 ml/day, containing ~0.003 mmol of NO3(-)) for 6 days. On days 4, 5, and 6 of the supplementation periods, subjects completed a double-step exercise protocol that included transitions from unloaded to moderate-intensity exercise (U→M) followed immediately by moderate to severe-intensity exercise (M→S). Compared with PL, BR elevated resting plasma nitrite concentration (PL: 65 ± 32 vs. BR: 348 ± 170 nM, P < 0.01) and reduced the VO2 τ(p) in M→S (PL: 46 ± 13 vs. BR: 36 ± 10 s, P < 0.05) but not U→M (PL: 25 ± 4 vs. BR: 27 ± 6 s, P > 0.05). During M→S exercise, the faster VO2 kinetics coincided with faster near-infrared spectroscopy-derived muscle [deoxyhemoglobin] kinetics (τ; PL: 20 ± 9 vs. BR: 10 ± 3 s, P < 0.05) and a 22% greater time-to-task failure (PL: 521 ± 158 vs. BR: 635 ± 258 s, P < 0.05). Dietary supplementation with NO3(-)-rich BR juice speeds VO2 kinetics and enhances exercise tolerance during severe-intensity exercise when initiated from an elevated metabolic rate.


Subject(s)
Beta vulgaris , Energy Metabolism/drug effects , Exercise Tolerance/drug effects , Nitrates/pharmacology , Oxygen Consumption/drug effects , Plant Extracts/pharmacology , Plant Roots , Adult , Basal Metabolism/drug effects , Basal Metabolism/physiology , Cross-Over Studies , Dietary Supplements , Double-Blind Method , Energy Metabolism/physiology , Exercise Tolerance/physiology , Female , Heart Rate/drug effects , Heart Rate/physiology , Humans , Lactates/blood , Male , Nitrites/blood , Oxygen Consumption/physiology , Physical Endurance/drug effects , Physical Endurance/physiology
16.
J Appl Physiol (1985) ; 115(3): 325-36, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23640589

ABSTRACT

Dietary supplementation with beetroot juice (BR), containing approximately 5-8 mmol inorganic nitrate (NO3(-)), increases plasma nitrite concentration ([NO2(-)]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3(-), respectively) or no supplement to establish the effects of BR on resting plasma [NO3(-)] and [NO2(-)] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3(-)-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2(-)] increased in a dose-dependent manner, with the peak changes occurring at approximately 2-3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% (P = 0.06) and 3.0% (P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2(-)] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3(-)-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3(-). These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.


Subject(s)
Beta vulgaris/physiology , Dietary Supplements , Exercise/physiology , Adult , Algorithms , Analysis of Variance , Beverages , Blood Pressure/physiology , Body Mass Index , Carbon Dioxide/blood , Dose-Response Relationship, Drug , Female , Heart Rate/physiology , Humans , Lactic Acid/blood , Male , Nitrates/blood , Nitrites/blood , Oxygen/blood , Oxygen Consumption/physiology , Young Adult
17.
Eur J Appl Physiol ; 113(7): 1805-19, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23423302

ABSTRACT

The extent to which dietary supplementation with the nitric oxide synthase (NOS) substrate, L-arginine (ARG), impacts on NO production and NO-mediated physiological responses is controversial. This randomised, double blinded, cross-over study investigated the effects of acute ARG supplementation on NO biomarkers, O2 cost of exercise and exercise tolerance in humans. In one experiment, 15 subjects completed moderate- and severe-intensity running bouts after acute supplementation with 6 g ARG or placebo (PLA). In another experiment, eight subjects completed moderate- and severe-intensity cycling bouts after acute supplementation with 6 g ARG plus 25 g of carbohydrate (ARG + CHO) or an energy-matched dose of carbohydrate alone (CHO). The plasma nitrite concentration was not different after ARG (Pre: 204 ± 79; Post: 241 ± 114 nM; P > 0.05) or ARG + CHO consumption (Pre: 304 ± 57; Post: 335 ± 116 nM; P > 0.05). During moderate-intensity exercise, the steady-state pulmonary VO2 was not different, relative to the respective placebo conditions, after ARG (PLA: 2,407 ± 318, ARG: 2,422 ± 333 mL min(-1)) or ARG + CHO (CHO: 1,695 ± 304, ARG + CHO: 1,712 ± 312 mL min(-1)) ingestion (P > 0.05). The tolerable duration of severe exercise was also not significantly different (P > 0.05) after ingesting ARG (PLA: 551 ± 140, ARG: 552 ± 150 s) or ARG + CHO (CHO: 457 ± 182, ARG + CHO: 441 ± 221 s). In conclusion, acute dietary supplementation with ARG or ARG + CHO did not alter biomarkers of NO synthesis, O2 cost of exercise or exercise tolerance in healthy subjects.


Subject(s)
Arginine/pharmacology , Exercise Tolerance/drug effects , Oxygen Consumption/drug effects , Adult , Carbohydrates/pharmacology , Dietary Supplements , Double-Blind Method , Humans , Male , Nitrites/blood , Running
18.
Pflugers Arch ; 465(4): 517-28, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23354414

ABSTRACT

Dietary nitrate supplementation, which enhances nitric oxide (NO) bioavailability, has previously been shown to contribute to improved exercise performance by reducing both oxygen cost and energy expenditure. In contrast, previous studies have indicated that NO can lower force production in vitro. To examine the role of dietary nitrates in regulating force generation under normal physiological conditions, we undertook an extended nitrate supplementation regime and determined force output and energy cost with a repeated isometric maximum voluntary contraction (MVC) protocol. In a double-blind, randomized, crossover design, eight participants received 0.5 l/day of nitrate-rich (BR) or nitrate-depleted (PL) beetroot juice for 15 days and completed an exercise protocol consisting of 50 MVCs at 2.5 h, 5 days and 15 days after the beginning of the supplementation period. No significant reduction in force output was determined for BR relative to PL for the peak contraction, the mean or the end force, and no significant time effect was found over the course of the supplementation period. There was a reduction in the mean PCr cost of exercise averaged over the BR supplementation trials, but this did not reach statistical significance for end exercise (BR 15.10 ± 4.14 mM, PL 17.10 ± 5.34 mM, P = 0.06) or the mean throughout the protocol (BR 15.96 ± 4.14 mM, PL 17.79 ± 4.51 mM, P = 0.06). However, a significant reduction in PCr cost per unit force output was found for BR at end exercise (P = 0.04). These results indicate that, under normal physiological conditions, increased NO bioavailability is not associated with a reduction of force-generating capability in human skeletal muscle and confirm that nitrate supplementation reduces the PCr cost of force production.


Subject(s)
Dietary Supplements , Isometric Contraction/drug effects , Muscle, Skeletal/metabolism , Nitrates/pharmacology , Adult , Exercise , Humans , Male , Muscle Strength/drug effects , Muscle, Skeletal/physiology , Nitrates/blood
19.
Am J Physiol Regul Integr Comp Physiol ; 304(2): R73-83, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23174856

ABSTRACT

Dietary nitrate (NO(3)(-)) supplementation has been shown to reduce resting blood pressure and alter the physiological response to exercise in young adults. We investigated whether these effects might also be evident in older adults. In a double-blind, randomized, crossover study, 12 healthy, older (60-70 yr) adults supplemented their diet for 3 days with either nitrate-rich concentrated beetroot juice (BR; 2 × 70 ml/day, ∼9.6 mmol/day NO(3)(-)) or a nitrate-depleted beetroot juice placebo (PL; 2 × 70 ml/day, ∼0.01 mmol/day NO(3)(-)). Before and after the intervention periods, resting blood pressure and plasma [nitrite] were measured, and subjects completed a battery of physiological and cognitive tests. Nitrate supplementation significantly increased plasma [nitrite] and reduced resting systolic (BR: 115 ± 9 vs. PL: 120 ± 6 mmHg; P < 0.05) and diastolic (BR: 70 ± 5 vs. PL: 73 ± 5 mmHg; P < 0.05) blood pressure. Nitrate supplementation resulted in a speeding of the Vo(2) mean response time (BR: 25 ± 7 vs. PL: 28 ± 7 s; P < 0.05) in the transition from standing rest to treadmill walking, although in contrast to our hypothesis, the O(2) cost of exercise remained unchanged. Functional capacity (6-min walk test), the muscle metabolic response to low-intensity exercise, brain metabolite concentrations, and cognitive function were also not altered. Dietary nitrate supplementation reduced resting blood pressure and improved Vo(2) kinetics during treadmill walking in healthy older adults but did not improve walking or cognitive performance. These results may have implications for the enhancement of cardiovascular health in older age.


Subject(s)
Beta vulgaris , Blood Pressure/drug effects , Cognition/drug effects , Diet , Dietary Supplements , Muscle, Skeletal/drug effects , Nitrates/administration & dosage , Oxygen Consumption/drug effects , Age Factors , Aged , Aging , Beverages , Brain/drug effects , Brain/metabolism , Cross-Over Studies , Double-Blind Method , England , Exercise Test , Exercise Tolerance/drug effects , Female , Humans , Kinetics , Male , Middle Aged , Muscle, Skeletal/metabolism , Neuropsychological Tests , Nitrates/blood , Phosphocreatine/metabolism , Plant Roots , Walking
20.
Eur J Appl Physiol ; 112(12): 4127-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22526247

ABSTRACT

Dietary nitrate supplementation has been reported to improve short distance time trial (TT) performance by 1-3 % in club-level cyclists. It is not known if these ergogenic effects persist in longer endurance events or if dietary nitrate supplementation can enhance performance to the same extent in better trained individuals. Eight well-trained male cyclists performed two laboratory-based 50 mile TTs: (1) 2.5 h after consuming 0.5 L of nitrate-rich beetroot juice (BR) and (2) 2.5 h after consuming 0.5 L of nitrate-depleted BR as a placebo (PL). BR significantly elevated plasma [NO(2) (-)] (BR: 472 ± 96 vs. PL: 379 ± 94 nM; P < 0.05) and reduced completion time for the 50 mile TT by 0.8 % (BR: 136.7 ± 5.6 vs. PL: 137.9 ± 6.4 min), which was not statistically significant (P > 0.05). There was a significant correlation between the increased post-beverage plasma [NO(2) (-)] with BR and the reduction in TT completion time (r = -0.83, P = 0.01). Power output (PO) was not different between the conditions at any point (P > 0.05) but oxygen uptake ([Formula: see text]O(2)) tended to be lower in BR (P = 0.06), resulting in a significantly greater PO/[Formula: see text]O(2) ratio (BR: 67.4 ± 5.5 vs. PL: 65.3 ± 4.8 W L min(-1); P < 0.05). In conclusion, acute dietary supplementation with beetroot juice did not significantly improve 50 mile TT performance in well-trained cyclists. It is possible that the better training status of the cyclists in this study might reduce the physiological and performance response to NO(3) (-) supplementation compared with the moderately trained cyclists tested in earlier studies.


Subject(s)
Dietary Supplements , Nitrates/pharmacology , Physical Endurance/drug effects , Adult , Beta vulgaris/chemistry , Beverages , Bicycling , Case-Control Studies , Humans , Male , Nitrates/blood , Oxygen Consumption , Physical Endurance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL