Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Neuropsychopharmacol ; 21(9): 809-813, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29917080

ABSTRACT

Loudness dependence of auditory evoked potentials (LDAEP) is a widely used EEG-based biomarker for central serotonergic activity. Serotonin has been shown to be associated with different psychiatric disorders such as depression and schizophrenia. Despite its clinical significance, the underlying neurochemical mechanism of this promising marker is not fully understood, and further research is needed to improve its validity. Other neurotransmitters might have a significant impact on this measure. Thus, we assessed the inhibitory action through individual GABA/H20 concentrations and GABA/glutamate ratios by means of magnetic resonance spectroscopy at 3T in healthy subjects. The measurements were assessed in the primary auditory cortex to investigate the association with the LDAEP, whose generators are mainly in the primary auditory cortex. For the first time, this study examines the link between GABAergic neurotransmission and LDAEP, and the data preliminary show that GABA may not contribute to the generation of EEG-based LDAEP.


Subject(s)
Auditory Cortex/metabolism , Auditory Perception/physiology , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Proton Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid/metabolism , Acoustic Stimulation/methods , Adult , Auditory Cortex/diagnostic imaging , Glutamic Acid/metabolism , Humans , Male , Synaptic Transmission/physiology , Water/metabolism , Young Adult
2.
PLoS One ; 9(10): e109216, 2014.
Article in English | MEDLINE | ID: mdl-25279457

ABSTRACT

INTRODUCTION: Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provides high spatial and temporal resolution. In this study we combined EEG and fMRI to investigate the structures involved in the processing of different sound pressure levels (SPLs). METHODS: EEG data were recorded simultaneously with fMRI from 16 healthy volunteers using MR compatible devices at 3 T. Tones with different SPLs were delivered to the volunteers and the N1/P2 amplitudes were included as covariates in the fMRI data analysis in order to compare the structures activated with high and low SPLs. Analysis of variance (ANOVA) and ROI analysis were also performed. Additionally, source localisation analysis was performed on the EEG data. RESULTS: The integration of averaged ERP parameters into the fMRI analysis showed an extended map of areas exhibiting covariation with the BOLD signal related to the auditory stimuli. The ANOVA and ROI analyses also revealed additional brain areas other than the primary auditory cortex (PAC) which were active with the auditory stimulation at different SPLs. The source localisation analyses showed additional sources apart from the PAC which were active with the high SPLs. DISCUSSION: The PAC and the insula play an important role in the processing of different SPLs. In the fMRI analysis, additional activation was found in the anterior cingulate cortex, opercular and orbito-frontal cortices with high SPLs. A strong response of the visual cortex was also found with the high SPLs, suggesting the presence of cross-modal effects.


Subject(s)
Auditory Perception , Brain Mapping/methods , Acoustic Stimulation , Adult , Analysis of Variance , Electroencephalography , Evoked Potentials, Auditory , Female , Humans , Limbic System/physiology , Magnetic Resonance Imaging , Male
3.
J Neurosci Methods ; 232: 110-7, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-24858798

ABSTRACT

BACKGROUND: The feasibility of recording electroencephalography (EEG) at ultra-high static magnetic fields up to 9.4 T was recently demonstrated and is expected to be incorporated into functional magnetic resonance imaging (fMRI) studies at 9.4 T. Correction of the pulse artefact (PA) is a significant challenge since its amplitude is proportional to the strength of the magnetic field in which EEG is recorded. NEW METHOD: We conducted a study in which different PA correction methods were applied to EEG data recorded inside a 9.4 T scanner in order to retrieve visual P100 and auditory P300 evoked potentials. We explored different PA reduction methods, including the optimal basis set (OBS) method as well as objective and subjective component rejection using independent component analysis (ICA). RESULTS: ICA followed by objective rejection of components is optimal for retrieving visual P100 and auditory P300 from EEG data recorded inside the scanner. COMPARISON WITH EXISTING METHODS: Previous studies suggest that OBS or OBS followed by ICA are optimal for retrieving evoked potentials at 3T. In our EEG data recorded at 9.4 T OBS performed alone was not fully optimal for the identification of evoked potentials. OBS followed by ICA was partially effective. CONCLUSIONS: In this study ICA has been shown to be an important tool for correcting the PA in EEG data recorded at 9.4 T, particularly when automated rejection of components is performed.


Subject(s)
Brain/physiology , Brain/radiation effects , Evoked Potentials, Auditory/radiation effects , Evoked Potentials, Visual/physiology , Evoked Potentials, Visual/radiation effects , Magnetic Fields , Acoustic Stimulation , Adult , Brain/blood supply , Brain Mapping , Evoked Potentials, Auditory/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Photic Stimulation , Principal Component Analysis , Reproducibility of Results , Young Adult
4.
PLoS One ; 8(5): e62915, 2013.
Article in English | MEDLINE | ID: mdl-23650538

ABSTRACT

Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.


Subject(s)
Event-Related Potentials, P300 , Evoked Potentials, Visual , Acoustic Stimulation , Adult , Evoked Potentials, Auditory , Female , Humans , Magnetic Fields , Magnetic Resonance Imaging , Male , Middle Aged , Photic Stimulation , Young Adult
5.
Hum Brain Mapp ; 33(2): 398-418, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21438078

ABSTRACT

Sustained responsiveness to external stimulation is fundamental to many time-critical interactions with the outside world. We used functional magnetic resonance imaging during speeded stimulus detection to identify convergent and divergent neural correlates of maintaining the readiness to respond to auditory, tactile, and visual stimuli. In addition, using a multimodal condition, we investigated the effect of making stimulus modality unpredictable. Relative to sensorimotor control tasks, all three unimodal detection tasks elicited stronger activity in the right temporo-parietal junction, inferior frontal cortex, anterior insula, dorsal premotor cortex, and anterior cingulate cortex as well as bilateral mid-cingulum, midbrain, brainstem, and medial cerebellum. The multimodal detection condition additionally activated left dorsal premotor cortex and bilateral precuneus. Modality-specific modulations were confined to respective sensory areas: we found activity increases in relevant, and decreases in irrelevant sensory cortices. Our findings corroborate the modality independence of a predominantly right-lateralized core network for maintaining an alert (i.e., highly responsive) state and extend previous results to the somatosensory modality. Monitoring multiple sensory channels appears to induce additional processing, possibly related to stimulus-driven shifts of intermodal attention. The results further suggest that directing attention to a given sensory modality selectively enhances and suppresses sensory processing-even in simple detection tasks, which do not require inter- or intra-modal selection.


Subject(s)
Acoustic Stimulation , Attention/physiology , Photic Stimulation , Touch Perception , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Reaction Time/physiology , Somatosensory Cortex/physiology
6.
Neuroimage ; 54(3): 2503-13, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20946960

ABSTRACT

The amygdala plays a key role in emotional processing. The specific contribution of the amygdala during the experience of one's own emotion, however, remains controversial and requires clarification. There is a long-standing debate on hemispheric lateralization of emotional processes, yet few studies to date directly investigated differential activation patterns for the left and right amygdala. Limited evidence supports right amygdala involvement in automatic processes of emotion and left amygdala involvement in conscious and cognitively controlled emotion processing. The present study investigated differential contributions of the left and right amygdala to cognitive and automatic mechanisms of mood induction. Using functional magnetic resonance imaging (fMRI), we examined hemispheric amygdala responses during two mood induction paradigms: a purely visual method presenting face stimuli and an audiovisual method using faces and music. Amygdala responses in 30 subjects (16 females) showed differences in lateralization patterns depending on the processing mode. The left amygdala exhibited comparable activation levels for both methods. The right amygdala, in contrast, showed increased activity only for the audiovisual condition and this activity was increasing over time. The left amygdala showed augmented activity with higher intensity ratings of negative emotional valence. These results support a left-lateralized cognitive and intentional control of mood and a right-sided more automatic induction of emotion that relies less on explicit reflection processes. The modulation of the left amygdala responses by subjective experience may reflect individual differences in the cognitive effort used to induce the mood. Thus, the central role of the amygdala may not be restricted to the perception of emotion in others but also extend into processes involved in regulation of mood.


Subject(s)
Affect/physiology , Amygdala/physiology , Cognition/physiology , Acoustic Stimulation , Adult , Attention/physiology , Data Interpretation, Statistical , Face , Female , Functional Laterality/physiology , Happiness , Humans , Individuality , Magnetic Resonance Imaging , Male , Music/psychology , Photic Stimulation , Psychomotor Performance/physiology , Young Adult
7.
Neuroimage ; 50(1): 250-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19969096

ABSTRACT

In verbal communication, prosodic codes may be phylogenetically older than lexical ones. Little is known, however, about early, automatic encoding of emotional prosody. This study investigated the neuromagnetic analogue of mismatch negativity (MMN) as an index of early stimulus processing of emotional prosody using whole-head magnetoencephalography (MEG). We applied two different paradigms to study MMN; in addition to the traditional oddball paradigm, the so-called optimum design was adapted to emotion detection. In a sequence of randomly changing disyllabic pseudo-words produced by one male speaker in neutral intonation, a traditional oddball design with emotional deviants (10% happy and angry each) and an optimum design with emotional (17% happy and sad each) and nonemotional gender deviants (17% female) elicited the mismatch responses. The emotional category changes demonstrated early responses (<200 ms) at both auditory cortices with larger amplitudes at the right hemisphere. Responses to the nonemotional change from male to female voices emerged later ( approximately 300 ms). Source analysis pointed at bilateral auditory cortex sources without robust contribution from other such as frontal sources. Conceivably, both auditory cortices encode categorical representations of emotional prosodic. Processing of cognitive feature extraction and automatic emotion appraisal may overlap at this level enabling rapid attentional shifts to important social cues.


Subject(s)
Affect , Brain/physiology , Emotions , Speech Perception/physiology , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Brain Mapping , Female , Functional Laterality , Humans , Magnetoencephalography , Male , Neuropsychological Tests , Sex Characteristics , Speech , Time Factors , Young Adult
8.
Neuroimage ; 34(4): 1577-87, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17187996

ABSTRACT

Size and location of activated cortical areas are often identified in relation to their surrounding macro-anatomical landmarks such as gyri and sulci. The sulcal pattern, however, is highly variable. In addition, many cortical areas are not linked to well defined landmarks, which in turn do not have a fixed relationship to functional and cytoarchitectonic boundaries. Therefore, it is difficult to unambiguously attribute localized neuronal activity to the corresponding cortical areas in the living human brain. Here we present new methods that are implemented in a toolbox for the objective anatomical identification of neuromagnetic activity with respect to cortical areas. The toolbox enables the platform independent integration of many types of source analysis obtained from magnetoencephalography (MEG) together with probabilistic cytoarchitectonic maps obtained in postmortem brains. The probability maps provide information about the relative frequency of a given cortical area being located at a given position in the brain. In the new software, the neuromagnetic data are analyzed with respect to cytoarchitectonic maps that have been transformed to the individual subject brain space. A number of measures define the degree of overlap between and distance from the activated areas and the corresponding cytoarchitectonic maps. The implemented algorithms enable the investigator to quantify how much of the reconstructed current density can be attributed to distinct cortical areas. Dynamic correspondence patterns between the millisecond-resolved MEG data and the static cytoarchitectonic maps are obtained. We show examples for auditory and visual activation patterns. However, size and location of the postmortem brain areas as well as the inverse method applied to the neuromagnetic data bias the anatomical classification. Therefore, the adaptation to the respective application and a combination of the objective quantities are discussed.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Brain/physiology , Magnetoencephalography/methods , Acoustic Stimulation , Adult , Humans , Magnetic Resonance Imaging/methods , Male , Photic Stimulation , Probability
SELECTION OF CITATIONS
SEARCH DETAIL