Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Arch Virol ; 165(6): 1385-1396, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32346764

ABSTRACT

Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3ß-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (ß) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.


Subject(s)
Antiviral Agents/pharmacology , Cardenolides/pharmacology , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Acyclovir/pharmacology , Animals , Antiviral Agents/chemical synthesis , Cardenolides/chemical synthesis , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Resistance, Viral , Herpesviridae Infections/drug therapy , Humans , Vero Cells
2.
Planta Med ; 86(7): 505-515, 2020 May.
Article in English | MEDLINE | ID: mdl-32247285

ABSTRACT

Spondias mobin leaves have been traditionally used for treating cold sores. The study investigated the mechanism of antiherpes action of S. mombin extract, fractions, and geraniin. Different concentrations of samples were used to evaluate the in vitro antiherpes activity (anti-HSV-1) in virucidal, post-infection, attachment, and penetration assays. The mechanism of action of geraniin was investigated considering the glycoproteins gB and gD of HSV-1 surface as potential molecular targets. Molecular docking simulations were carried out for both in order to determine the possible binding mode position of geraniin at the activity sites. The binding mode position was posteriorly optimized considering the flexibility of the glycoproteins. The chemical analysis of samples was performed by LC-MS and revealed the presence of 22 substances, which are hydrolysable tannins, O-glycosylated flavonoids, phenolic acids, and a carbohydrate. The extract, tannin-rich fraction and geraniin showed important in vitro virucidal activity through blocking viral attachment but showed no relevant inhibition of viral penetration. The in silico approaches demonstrated a high number of potential strong intermolecular interactions as hydrogen bonds between geraniin and the activity site of the glycoproteins, particularly the glycoprotein gB. In silico experiments indicated that geraniin is at least partially responsible for the anti-herpes activity through interaction with the viral surface glycoprotein gB, which is responsible for viral adsorption. These results highlight the therapeutic potential of S. mombin anti-herpes treatment and provides support for its traditional purposes. However, further studies are required to validate the antiviral activities in vivo, as well as efficacy in humans.


Subject(s)
Anacardiaceae , Antiviral Agents , Herpes Simplex , Herpesvirus 1, Human , Herpesvirus 2, Human , Humans , Molecular Docking Simulation , Plant Extracts , Plant Leaves , Vero Cells , Virus Replication
3.
Food Environ Virol ; 11(2): 157-166, 2019 06.
Article in English | MEDLINE | ID: mdl-30719622

ABSTRACT

Millions of people use contaminated water sources for direct consumption. Chlorine is the most widely disinfection product but can produce toxic by-products. In this context, natural and synthetic compounds can be an alternative to water disinfection. Therefore, the aim of this study was to assess the inactivation of human adenovirus by N-chlorotaurine (NCT), bromamine-T (BAT) and Grape seed extract (GSE) in water. Distilled water artificially contaminated with recombinant human adenovirus type 5 (rAdV-GFP) was treated with different concentrations of each compound for up to 120 min, and viral infectivity was assessed by fluorescence microscopy. The decrease in activity of the compounds in the presence of organic matter was evaluated in water supplemented with peptone. As results, NCT and GSE inactivated approximately 2.5 log10 of adenovirus after 120 min. With BAT, more than 4.0 log10 decrease was observed within 10 min. The oxidative activity of 1% BAT decreased by 50% in 0.5% peptone within a few minutes, while the reduction was only 30% for 1% NCT in 5% peptone after 60 min. Organic matter had no effect on the activity of GSE. Moreover, the minimal concentration of BAT and GSE to kill viruses was lower than that known to kill human cells. It was concluded that the three compounds have potential to be used for water disinfection for drinking or reuse purposes.


Subject(s)
Adenoviruses, Human/drug effects , Disinfectants/pharmacology , Disinfection/methods , Fresh Water/virology , Grape Seed Extract/pharmacology , Sulfonamides/pharmacology , Taurine/analogs & derivatives , Virus Inactivation/drug effects , Adenoviridae Infections/virology , Adenoviruses, Human/growth & development , Adenoviruses, Human/physiology , Humans , Taurine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL