Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Commun ; 11(1): 3819, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732875

ABSTRACT

Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.


Subject(s)
Breast Neoplasms/therapy , Immunotherapy/methods , Niacinamide/administration & dosage , Receptor, ErbB-2/immunology , 9,10-Dimethyl-1,2-benzanthracene , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Carcinogenesis/drug effects , Carcinogenesis/immunology , Disease Progression , Female , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mammary Neoplasms, Experimental/chemically induced , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/prevention & control , Medroxyprogesterone Acetate , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, ErbB-2/metabolism , Survival Analysis
2.
Arterioscler Thromb Vasc Biol ; 33(10): 2297-305, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23887641

ABSTRACT

OBJECTIVE: Alterations of the chemokine receptor CX3CR1 gene were associated with a reduced risk of myocardial infarction in human and limited atherosclerosis in mice. In this study, we addressed whether CX3CR1 antagonists are potential therapeutic tools to limit acute and chronic inflammatory processes in atherosclerosis. APPROACH AND RESULTS: Treatment with F1, an amino terminus-modified CX3CR1 ligand endowed with CX3CR1 antagonist activity, reduced the extent of atherosclerotic lesions in both Apoe(-/-) and Ldlr(-/-) proatherogenic mouse models. Macrophage accumulation in the aortic sinus was reduced in F1-treated Apoe(-/-) mice but the macrophage density of the lesions was similar in F1-treated and control mice. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte adhesion, potentially limiting their recruitment. In addition, F1-treated Apoe(-/-) mice displayed reduced numbers of blood inflammatory monocytes, whereas resident monocyte numbers remained unchanged. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte survival. Finally, F1 treatment of Apoe(-/-) mice with advanced atherosclerosis led to smaller lesions than untreated mice but without reverting to the initial phenotype. CONCLUSIONS: The CX3CR1 antagonist F1 is a potent inhibitor of the progression of atherosclerotic lesions by means of its selective impact on inflammatory monocyte functions. Controlling monocyte trafficking and survival may be an alternative or complementary therapy to lipid-lowering drugs classically used in the treatment of atherosclerosis.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Aorta/drug effects , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Chemokine CX3CL1/pharmacology , Hypolipidemic Agents/pharmacology , Peptides/pharmacology , Receptors, Chemokine/antagonists & inhibitors , Animals , Aorta/immunology , Aorta/metabolism , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , CX3C Chemokine Receptor 1 , Cells, Cultured , Disease Models, Animal , Humans , Ligands , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Receptors, Chemokine/metabolism , Receptors, LDL/deficiency , Receptors, LDL/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL