Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Nutr ; 58(2): 551-563, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29374793

ABSTRACT

PURPOSE: Obesity predisposes to cardiovascular and metabolic diseases. The amino acid, L-taurine (Tau), regulates glucose and lipid homeostasis and vascular function. Here we investigated whether Tau supplementation prevents endothelial dysfunction in the thoracic aortas of monosodium glutamate-induced obese (MSG) rats. METHODS: Male rats received subcutaneous injections of MSG (4 mg/kg body weight/day) or saline (control group, CTL) during the first five days of life. From 21 to 150 days of age, the rats were distributed into the groups: CTL, MSG, and CTL and MSG supplemented with 2.5% Tau in their drinking water (CTAU and MTAU). RESULTS: At 150-days old, MSG rats presented massive abdominal fat deposition, hypertriglyceridemia, hyperinsulinemia, glucose intolerance and high plasma levels of malondialdehyde (MDA), a lipid peroxidation marker. Tau supplementation attenuated fat accumulation in perigonadal adipose tissue and prevented the increase in triglycerides and MDA plasma levels. Aortic rings of MSG rats presented reduced vasodilation in response to acetylcholine (ACh). No modifications in insulin-induced vasodilatation, or Akt and eNOS phosphorylation, were observed in MSG aortas; thoracic aortas from MSG rats presented reduced tunica media thickness, with a lower aortic wall thickness/lumen diameter ratio and decreased total collagen content. Tau supplementation restored ACh-induced vasodilation and collagen content. CONCLUSIONS: Our study presents the first evidence that Tau prevents disruptions in vascular reactivity and in extracellular matrix composition in thoracic aortas of MSG-obese rats. The vascular protective actions of Tau may be linked to reduced lipid peroxidation and a reduction in cardiovascular risk factors, such as abdominal fat and hypertriglyceridemia.


Subject(s)
Aorta, Thoracic/drug effects , Dietary Supplements , Endothelium, Vascular/drug effects , Hypothalamus/metabolism , Obesity/physiopathology , Taurine/pharmacology , Animals , Aorta, Thoracic/metabolism , Disease Models, Animal , Male , Rats , Rats, Wistar , Taurine/administration & dosage
2.
Amino Acids ; 50(11): 1511-1524, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30206707

ABSTRACT

The beneficial actions of L-taurine (Tau) against glucose intolerance, obesity, type 2 diabetes (T2D), and non-alcoholic fat liver disease (NAFLD) have been linked to its antioxidant and anti-inflammatory effects, which ameliorate tissue insulin sensitivity. Importantly, there are several lines of evidence that indicate a direct action of Tau on the endocrine pancreas to regulate the secretion and paracrine actions of insulin, glucagon, and somatostatin. Furthermore, Tau can also ameliorate glucose metabolism through the enhancement of insulin signaling. However, some of the benefits of Tau upon intermediary metabolism may manifest via considerable antagonism of the action of insulin. Therefore, this review discusses the mechanisms of action by which Tau may regulate endocrine pancreatic morphofunction, and glucose and lipid homeostasis.


Subject(s)
Glucose/metabolism , Lipid Metabolism/physiology , Pancreas/metabolism , Taurine/metabolism , Animals , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Signal Transduction/physiology
3.
Eur J Nutr ; 56(6): 2069-2080, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27317126

ABSTRACT

PURPOSE: L-alanine (Ala) and L-arginine (Arg) have been reported to regulate pancreatic ß-cell physiology and to prevent body fat accumulation in diet-induced obesity. Here, we assessed growth and adiposity parameters, glucose tolerance, insulin secretion and the expression of insulin and nutrient-regulated proteins in monosodium glutamate (MSG)-obese mice supplemented with either Ala or Arg. METHODS: Male newborn C57Bl/6 mice received a daily subcutaneous injection of MSG or saline solution (CTL group), during the first 6 days of life. From 30 to 90 days of age, MSG and CTL mice received or not 2.55 % Ala (CAla or MArg groups) or 1.51 % Arg-HCl (CArg or MArg groups) in their drinking water. RESULTS: Adult MSG mice displayed higher adiposity associated with lower phosphorylation of the adipogenic enzyme, ACC, in adipose tissue. Glucose intolerance in MSG mice was linked to lower insulin secretion and to lower expression of IRß in adipose tissue, as well as AS160 phosphorylation in skeletal muscle. Perigonadal fat depots were smaller in Ala and Arg mice, while retroperitoneal fat pads were decreased by Ala supplementation only. Both Ala and Arg improved fed-state glycemia as well as IRß and pAS160 content, but only Ala led to improved glucose tolerance and insulin secretion. Adipostatic signals were increased in MAla mice, as indicated by enhanced AMPK phosphorylation and pACC content in fat depots. CONCLUSIONS: Ala supplementation led to more pronounced metabolic improvements compared to Arg, possibly due to suppression of lipogenesis through activation of the AMPK/ACC pathway.


Subject(s)
Adiposity/drug effects , Alanine/pharmacology , Arginine/pharmacology , Dietary Supplements , Glucose Intolerance/drug therapy , Obesity/drug therapy , Animals , Blood Glucose/metabolism , Cholesterol/blood , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Homeostasis/drug effects , Insulin/blood , Insulin/metabolism , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/chemically induced , Phosphorylation , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Serum Albumin/metabolism , Sodium Glutamate , Triglycerides/blood
4.
Br J Nutr ; 104(8): 1148-55, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20591207

ABSTRACT

Taurine (TAU) supplementation increases insulin secretion in response to high glucose concentrations in rodent islets. This effect is probably due to an increase in Ca2+ handling by the islet cells. Here, we investigated the possible involvement of the cholinergic/phospholipase C (PLC) and protein kinase (PK) A pathways in this process. Adult mice were fed with 2% TAU in drinking water for 30 d. The mice were killed and pancreatic islets isolated by the collagenase method. Islets from TAU-supplemented mice showed higher insulin secretion in the presence of 8.3 mm-glucose, 100 µm-carbachol (Cch) and 1 mm-3-isobutyl-1-methyl-xanthine (IBMX), respectively. The increase in insulin secretion in response to Cch in TAU islets was accompanied by a higher intracellular Ca2+ mobilisation and PLCß2 protein expression. The Ca2+ uptake was higher in TAU islets in the presence of 8.3 mm-glucose, but similar when the islets were challenged by glucose plus IBMX. TAU islets also showed an increase in the expression of PKAα protein. This protein may play a role in cation accumulation, since the amount of Ca2+ in these islets was significantly reduced by the PKA inhibitors: N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89) and PK inhibitor-(6-22)-amide (PKI). In conclusion, TAU supplementation increases insulin secretion in response to glucose, favouring both influx and internal mobilisation of Ca2+, and these effects seem to involve the activation of both PLC-inositol-1,4,5-trisphosphate and cAMP-PKA pathways.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Phospholipase C beta/metabolism , Taurine/administration & dosage , 1-Methyl-3-isobutylxanthine/pharmacology , Animals , Carbachol/pharmacology , Cells, Cultured , Colforsin/pharmacology , Cyclic AMP-Dependent Protein Kinases/genetics , Cytoplasm , Dietary Supplements , Insulin Secretion , Mice , Phorbol Esters/pharmacology , Phospholipase C beta/genetics , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Taurine/pharmacology
5.
Diabetes Metab Res Rev ; 25(4): 370-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19405082

ABSTRACT

BACKGROUND: Taurine (TAU), a naturally occurring sulfur-containing amino acid, is found at high concentrations in plasma and mammalian tissues and regulates osmolarity, ion channel activity, and glucose homeostasis. Several reports have shown that physiological plasma TAU levels seem to be important for adequate beta (beta)-cell function and insulin action, since low concentrations of TAU in the plasma have been reported in the pre-diabetic and diabetic states. METHODS: Glucose tolerance and insulin sensitivity were investigated in mice supplemented with 2% (w/v) TAU in their drinking water for 30 days, as well as the insulin secretion from isolated islets stimulated by glucose or L-leucine. RESULTS: TAU-supplemented mice demonstrated improved glucose tolerance and higher insulin sensitivity, compared to controls (CTL). In addition, their islets secreted more insulin in response to high concentrations of glucose and L-leucine. L-[U-(14)C]leucine oxidation was higher in TAU than in CTL islets, whereas D-[U-(14)C]glucose oxidation, ATP levels, glucose transporter (GLUT) 2 and glucokinase (GCK) protein expressions were similar in both types of islets. The L-type beta(2) subunit voltage-sensitive Ca(2+) channel protein, as well as (45)Ca uptake, were significantly higher in TAU-supplemented than CTL islets. In addition, islets from TAU-supplemented mice secreted more glucagon than CTL islets at low glucose. CONCLUSIONS: TAU supplementation improves glucose tolerance and insulin sensitivity in mice, as well as insulin secretion from isolated islets. The latter effect seems to be, at least in part, dependent on a better Ca(2+) handling by the islets.


Subject(s)
Blood Glucose/metabolism , Glucagon/metabolism , Insulin/metabolism , Islets of Langerhans/metabolism , Taurine/physiology , Animals , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Dietary Supplements , In Vitro Techniques , Insulin Secretion , Leucine/metabolism , Mice , Taurine/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL