Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Med Chem ; 62(17): 7769-7787, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31415176

ABSTRACT

While bronchodilators and inhaled corticosteroids are the mainstay of asthma treatment, up to 50% of asthmatics remain uncontrolled. Many studies show that the cysteinyl leukotriene cascade remains highly activated in some asthmatics, even those on high-dose inhaled or oral corticosteroids. Hence, inhibition of the leukotriene C4 synthase (LTC4S) enzyme could provide a new and differentiated core treatment for patients with a highly activated cysteinyl leukotriene cascade. Starting from a screening hit (3), a program to discover oral inhibitors of LTC4S led to (1S,2S)-2-({5-[(5-chloro-2,4-difluorophenyl)(2-fluoro-2-methylpropyl)amino]-3-methoxypyrazin-2-yl}carbonyl)cyclopropanecarboxylic acid (AZD9898) (36), a picomolar LTC4S inhibitor (IC50 = 0.28 nM) with high lipophilic ligand efficiency (LLE = 8.5), which displays nanomolar potency in cells (peripheral blood mononuclear cell, IC50,free = 6.2 nM) and good in vivo pharmacodynamics in a calcium ionophore-stimulated rat model after oral dosing (in vivo, IC50,free = 34 nM). Compound 36 mitigates the GABA binding, hepatic toxicity signal, and in vivo toxicology findings of an early lead compound 7 with a human dose predicted to be 30 mg once daily.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Pyrazines/pharmacology , Administration, Oral , Animals , Anti-Asthmatic Agents/administration & dosage , Anti-Asthmatic Agents/chemistry , Asthma/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Glutathione Transferase/metabolism , Humans , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
2.
J Med Chem ; 60(12): 5057-5071, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28520415

ABSTRACT

PI3Kδ is a lipid kinase that is believed to be important in the migration and activation of cells of the immune system. Inhibition is hypothesized to provide a powerful yet selective immunomodulatory effect that may be beneficial for the treatment of conditions such as asthma or rheumatoid arthritis. In this work, we describe the identification of inhibitors based on a thiazolopyridone core structure and their subsequent optimization for inhalation. The initially identified compound (13) had good potency and isoform selectivity but was not suitable for inhalation. Addition of basic substituents to a region of the molecule pointing to solvent was tolerated (enzyme inhibition pIC50 > 9), and by careful manipulation of the pKa and lipophilicity, we were able to discover compounds (20b, 20f) with good lung retention and cell potency that could be taken forward to in vivo studies where significant target engagement could be demonstrated.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Structure-Activity Relationship , Administration, Inhalation , Animals , Biological Availability , Chemistry Techniques, Synthetic , Drug Design , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/administration & dosage , Half-Life , Isoenzymes/antagonists & inhibitors , Mice, Transgenic , Permeability , Rats , Solubility , Thiazoles/chemistry
3.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R618-27, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27488889

ABSTRACT

Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.


Subject(s)
Diet, High-Fat , Fatty Acids/metabolism , Intestinal Mucosa/metabolism , Intra-Abdominal Fat/physiology , Thylakoids/metabolism , Up-Regulation/physiology , Animals , Male , Organ Size/physiology , Oxidation-Reduction , Rats , Rats, Sprague-Dawley , Thylakoids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL