Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Protoc ; 16(1): 472-496, 2021 01.
Article in English | MEDLINE | ID: mdl-33299155

ABSTRACT

Mural cells (smooth muscle cells and pericytes) are integral components of brain blood vessels that play important roles in vascular formation, blood-brain barrier maintenance, and regulation of regional cerebral blood flow (rCBF). These cells are implicated in conditions ranging from developmental vascular disorders to age-related neurodegenerative diseases. Here we present complementary tools for cell labeling with transgenic mice and organic dyes that allow high-resolution intravital imaging of the different mural cell subtypes. We also provide detailed methodologies for imaging of spontaneous and neural activity-evoked calcium transients in mural cells. In addition, we describe strategies for single- and two-photon optogenetics that allow manipulation of the activity of individual and small clusters of mural cells. Together with measurements of diameter and flow in individual brain microvessels, calcium imaging and optogenetics allow the investigation of pericyte and smooth muscle cell physiology and their role in regulating rCBF. We also demonstrate the utility of these tools to investigate mural cells in the context of Alzheimer's disease and cerebral ischemia mouse models. Thus, these methods can be used to reveal the functional and structural heterogeneity of mural cells in vivo, and allow detailed cellular studies of the normal function and pathophysiology of mural cells in a variety of disease models. The implementation of this protocol can take from several hours to days depending on the intended applications.


Subject(s)
Brain/blood supply , Myocytes, Smooth Muscle/cytology , Optogenetics/methods , Pericytes/cytology , Animals , Blood Circulation , Female , Male , Mice, Transgenic , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/ultrastructure , Optical Imaging/methods , Pericytes/metabolism , Pericytes/ultrastructure
2.
Cold Spring Harb Perspect Biol ; 7(10): a018846, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26384869

ABSTRACT

Two decades after the discovery that neural stem cells (NSCs) populate some regions of the mammalian central nervous system (CNS), deep knowledge has been accumulated on their capacity to generate new neurons in the adult brain. This constitutive adult neurogenesis occurs throughout life primarily within remnants of the embryonic germinal layers known as "neurogenic sites." Nevertheless, some processes of neurogliogenesis also occur in the CNS parenchyma commonly considered as "nonneurogenic." This "noncanonical" cell genesis has been the object of many claims, some of which turned out to be not true. Indeed, it is often an "incomplete" process as to its final outcome, heterogeneous by several measures, including regional location, progenitor identity, and fate of the progeny. These aspects also strictly depend on the animal species, suggesting that persistent neurogenic processes have uniquely adapted to the brain anatomy of different mammals. Whereas some examples of noncanonical neurogenesis are strictly parenchymal, others also show stem cell niche-like features and a strong link with the ventricular cavities. This work will review results obtained in a research field that expanded from classic neurogenesis studies involving a variety of areas of the CNS outside of the subventricular zone (SVZ) and subgranular zone (SGZ). It will be highlighted how knowledge concerning noncanonical neurogenic areas is still incomplete owing to its regional and species-specific heterogeneity, and to objective difficulties still hampering its full identification and characterization.


Subject(s)
Brain/embryology , Brain/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology , Animals , Cell Proliferation , Chromosome Mapping , Humans , Hypothalamus/pathology , Lateral Ventricles/physiology , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL