ABSTRACT
Magnetic bioactive glass-ceramics are biomaterials applied for magnetic hyperthermia in bone cancer treatment, thereby treating the bone tumor besides regenerating the damaged bone. However, combining high bioactivity and high saturation magnetization remains a challenge since the thermal treatment step employed to grow magnetic phases is also related to loss of bioactivity. Here, we propose a new nanocomposite made of superparamagnetic iron oxide nanoparticles (SPIONs) dispersed in a sol-gel-derived bioactive glass matrix, which does not need any thermal treatment for crystallization of magnetic phases. The scanning and transmission electron microscopies, X-ray diffraction, and dynamic light scattering results confirm that the SPIONs are actually embedded in a nanosized glass matrix, thus forming a nanocomposite. Magnetic and calorimetric characterizations evidence their proper behavior for hyperthermia applications, besides evidencing inter-magnetic nanoparticle interactions within the nanocomposite. Bioactivity and in vitro characterizations show that such nanocomposites exhibit apatite-forming properties similar to the highly bioactive parent glass, besides being osteoinductive. This methodology is a new alternative to produce magnetic bioactive materials to which the magnetic properties only rely on the quality of the SPIONs used in the synthesis. Thereby, these nanocomposites can be recognized as a new class of bioactive materials for applications in bone cancer treatment by hyperthermia.
Subject(s)
Hyperthermia, Induced , Nanocomposites , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Glass/chemistry , Magnetic Iron Oxide Nanoparticles , Magnetic Phenomena , Nanocomposites/chemistryABSTRACT
The manufacture of asbestos materials has been banished worldwide due to their toxicity, but discarding the existing wastes remains a challenge. We investigated an alternative mechanochemical method to treat asbestos-cement materials by loading them with potassium and phosphorus from KH2PO4 during the milling process to obtain a product used as liming and soil conditioner. The results showed total asbestos fibrous elimination after 7 to 8 h of milling. The materials showed a slow-release fertilizer profile. The liming property is maintained when the asbestos-cement weight proportion used is equal to or higher than KH2PO4. A comparative soil experiment with limestone also indicates that lower doses of the K- and P-enriched detoxified asbestos cement were required to reach similar liming effects. Maize cultivation (greenhouse) was used to evaluate its performance showing higher biomass production for the sample loaded with potassium and phosphorous.
Subject(s)
Asbestos , Soil , Asbestos/chemistry , Hydrogen-Ion Concentration , Nutrients , Phosphorus , Potassium , Soil/chemistryABSTRACT
This in vitro study aimed to analyze the physical and chemical characteristics of the hypersensitive human dentin-like surface after application of a bioactive glass (BG) paste (BG/Ac) irradiated or not with high-power lasers. Dentin specimens were treated with 17% Ethylenediamine tetraacetic acid (EDTA) solution to mimic a hypersensitive dentin and then submitted to neodymium: yttrium-aluminum-garnet (Nd:YAG) laser or CO2 laser irradiation prior and after application of BG/Ac. Characterizations were performed by using X-ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The results suggested that application of BG/Ac by itself caused some obstructions of dentinal tubules. Nd:YAG laser irradiation reduced the opening of the dentinal tubules with no changes in the collagen structure. CO2 laser irradiation caused dentin melting and resolidification along with cracks and chemical changes in collagen fibers. However, when BG/Ac paste was irradiated with lasers, a sequence of surface reactions between glass and dentin interface led to the formation of an amorphous hydroxyapatite layer, similar to that of an inorganic component of the normal dentin. Moreover, BG/Ac was able to prevent the formation of cracks and degradation of collagen fibers caused by CO2 irradiation. Overall, this study supports that application of BG/Ac paste irradiated by high-power laser could represent an effective and long-lasting therapeutic approach for dentin hypersensitivity.
Subject(s)
Dentin Sensitivity/therapy , Dentin/chemistry , Glass , Lasers , Aluminum , Carbon Dioxide , Collagen/chemistry , Edetic Acid/chemistry , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Molar , Neodymium/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , YttriumABSTRACT
Treatments for dentine hypersensitivity (DH) may produce positive effects, though do not have lasting results. We investigated the reparative potential of stem cells derived from deciduous teeth (SHEDs) in response to components delivered from substances used in the treatment of the DH, associated or not to laser phototherapy (LPT), to stimulate dentine formation. SHEDs were submitted to substances delivered from a laboratorial P-rich bioactive glass [57SiO2 -26CaO-17P2 O5 (wt %)] or a commercially available desensitizer (Gluma® Desensitizer), associated (or not) to LPT (InGAlP diode laser, 660 nm, 0.028 cm2 , 20 mW, 5 J/cm2 , 7 s, contact mode). Biomaterial characterization was performed by X-ray diffraction, scanning electron microscopy and the particle size was evaluated by dynamic light scattering. SHEDs proliferation and differentiation were analyzed by MTT and Alizarin Red staining, respectively. The conditioned media used in these tests were evaluated regarding their pH and the ionic concentration changes due to ions leached from the bioactive glass (BG). BG majority presented a non-crystalline solid structure and mixed particle sizes characterized by the agglomeration of nanoparticles. Cultures treated with BG alone or in association to LPT showed improved cell growth in relation to Gluma® (p < 0.05). Gluma® was cytotoxic in all tested conditions, regardless irradiated or not. BG associated to LPT induced intense mineral matrix formation. In conclusion, BG releases ionic dissolution products able to promote SHEDs differentiation. BG associated to LPT improves SHEDs proliferation and differentiation in vitro, and may be a promise therapeutic approach for the DH treatment. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 107-116, 2017.