Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Microorganisms ; 10(5)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35630332

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa is often involved in airway infections of cystic fibrosis (CF) patients. It persists in the hostile CF lung environment, inducing chronic infections due to the production of several virulence factors. In this regard, the ability to form a biofilm plays a pivotal role in CF airway colonization by P. aeruginosa. Bacterial virulence mitigation and bacterial cell adhesion hampering and/or biofilm reduced formation could represent a major target for the development of new therapeutic treatments for infection control. Essential oils (EOs) are being considered as a potential alternative in clinical settings for the prevention, treatment, and control of infections sustained by microbial biofilms. EOs are complex mixtures of different classes of organic compounds, usually used for the treatment of upper respiratory tract infections in traditional medicine. Recently, a wide series of EOs were investigated for their ability to modulate biofilm production by different pathogens comprising S. aureus, S. epidermidis, and P. aeruginosa strains. Machine learning (ML) algorithms were applied to develop classification models in order to suggest a possible antibiofilm action for each chemical component of the studied EOs. In the present study, we assessed the biofilm growth modulation exerted by 61 commercial EOs on a selected number of P. aeruginosa strains isolated from CF patients. Furthermore, ML has been used to shed light on the EO chemical components likely responsible for the positive or negative modulation of bacterial biofilm formation.

2.
Molecules ; 25(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466318

ABSTRACT

In the last decade essential oils have attracted scientists with a constant increase rate of more than 7% as witnessed by almost 5000 articles. Among the prominent studies essential oils are investigated as antibacterial agents alone or in combination with known drugs. Minor studies involved essential oil inspection as potential anticancer and antiviral natural remedies. In line with the authors previous reports the investigation of an in-house library of extracted essential oils as a potential blocker of HSV-1 infection is reported herein. A subset of essential oils was experimentally tested in an in vitro model of HSV-1 infection and the determined IC50s and CC50s values were used in conjunction with the results obtained by gas-chromatography/mass spectrometry chemical analysis to derive machine learning based classification models trained with the partial least square discriminant analysis algorithm. The internally validated models were thus applied on untested essential oils to assess their effective predictive ability in selecting both active and low toxic samples. Five essential oils were selected among a list of 52 and readily assayed for IC50 and CC50 determination. Interestingly, four out of the five selected samples, compared with the potencies of the training set, returned to be highly active and endowed with low toxicity. In particular, sample CJM1 from Calaminta nepeta was the most potent tested essential oil with the highest selectivity index (IC50 = 0.063 mg/mL, SI > 47.5). In conclusion, it was herein demonstrated how multidisciplinary applications involving machine learning could represent a valuable tool in predicting the bioactivity of complex mixtures and in the near future to enable the design of blended essential oil possibly endowed with higher potency and lower toxicity.


Subject(s)
Antiviral Agents/pharmacology , Herpesvirus 1, Human/drug effects , Lamiales/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Supervised Machine Learning/statistics & numerical data , Animals , Antiviral Agents/isolation & purification , Chlorocebus aethiops , Gas Chromatography-Mass Spectrometry , Herpesvirus 1, Human/growth & development , Humans , Microbial Sensitivity Tests , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Structure-Activity Relationship , Vero Cells
3.
Molecules ; 23(10)2018 Oct 09.
Article in English | MEDLINE | ID: mdl-30304862

ABSTRACT

PURPOSE: Herein, an extended investigation of Tea tree oil (TTO) against a number of multi-drug resistant (MDR) microorganisms in liquid and vapor phases is reported. METHODS: The activity of TTO was tested against methicillin-sensitive Staphylococcus aureus (MSSA), Escherichia coli, and clinical strains of methicillin-resistant S. aureus (MRSA), extended-spectrum beta lactamases producer carbapenem-sensitive Klebsiella pneumoniae (ESBL-CS-Kp), carbapenem-resistant K. pneumoniae (CR-Kp), Acinetobacter baumannii (CR-Ab), and Pseudomonas aeruginosa (CR-Pa). Minimal inhibitory/bactericidal concentrations (MIC/MBCs) and synergistic activity between TTO and different antimicrobials were determined. In the vapor assay (VP), TTO-impregnated discs were placed on the lid of a petri dish and incubated for 24 h at 37 °C. RESULTS: TTO showed a potent bactericidal activity against all the tested microorganisms. TTO in combination with each reference antimicrobial showed a high level of synergism at sub-inhibitory concentrations, particularly with oxacillin (OXA) against MRSA. The VP assay showed high activity of TTO against CR-Ab. CONCLUSION: Evaluation of in-vitro activity clearly indicated TTO as a potential effective antimicrobial treatment either alone or in association with known drugs against MDR. Therefore, TTO could represent the basis for a possible role in non-conventional regimens against S. aureus and Gram-negative MDR. TTO in VP might represent a promising option for local therapy of pneumonia caused by CR-Ab.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/drug effects , Melaleuca/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Oils, Volatile/pharmacology , Tea Tree Oil/pharmacology , Anti-Bacterial Agents/chemistry , Drug Synergism , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Tea Tree Oil/chemistry
4.
Molecules ; 23(2)2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29473844

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous organism and opportunistic pathogen that can cause persistent infections due to its peculiar antibiotic resistance mechanisms and to its ability to adhere and form biofilm. The interest in the development of new approaches for the prevention and treatment of biofilm formation has recently increased. The aim of this study was to seek new non-biocidal agents able to inhibit biofilm formation, in order to counteract virulence rather than bacterial growth and avoid the selection of escape mutants. Herein, different essential oils extracted from Mediterranean plants were analyzed for their activity against P. aeruginosa. Results show that they were able to destabilize biofilm at very low concentration without impairing bacterial viability. Since the action is not related to a bacteriostatic/bactericidal activity on P. aeruginosa, the biofilm change of growth in presence of the essential oils was possibly due to a modulation of the phenotype. To this aim, application of machine learning algorithms led to the development of quantitative activity-composition relationships classification models that allowed to direct point out those essential oil chemical components more involved in the inhibition of biofilm production. The action of selected essential oils on sessile phenotype make them particularly interesting for possible applications such as prevention of bacterial contamination in the community and in healthcare environments in order to prevent human infections. We assayed 89 samples of different essential oils as P. aeruginosa anti-biofilm. Many samples inhibited P. aeruginosa biofilm at concentrations as low as 48.8 µg/mL. Classification of the models was developed through machine learning algorithms.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Pseudomonas aeruginosa/drug effects , Algorithms , Biofilms/drug effects , Gas Chromatography-Mass Spectrometry , Humans , Machine Learning , Microbial Sensitivity Tests , ROC Curve , Reproducibility of Results
5.
Nat Prod Res ; 32(9): 1056-1061, 2018 May.
Article in English | MEDLINE | ID: mdl-28927300

ABSTRACT

A study on essential oil fractions of the Western Balkan endemic Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood collected in Montenegro is reported. The 24-h systematic steam distillation extraction procedure was performed. The gas chromatographic/mass spectrometric (GC/MS) analysis of the fractions showed γ-elemene and spathulenol as two main constituents, revealing a new chemotype of this plant species. Although varying in the content of these two main compounds, which makes the fractions quite different between each other, evaluation of the anti-Candida activity showed the lack of any significant efficacy.


Subject(s)
Candida/drug effects , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Sideritis/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Distillation , Drug Evaluation, Preclinical/methods , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Montenegro , Oils, Volatile/analysis , Plant Extracts/chemistry , Sesquiterpenes/analysis
6.
Nat Prod Res ; 32(11): 1254-1259, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28617136

ABSTRACT

A comprehensive study on essential oil samples of Foeniculum vulgare Miller from Tarquinia (Italy) is reported. A 24-h systematic steam distillation was performed on different harvested samples applying different extraction times. The GC-MS analysis of the residue outcome showed o-cymene, α-phellandrene, α-pinene and estragole as the major constituents. The predominance and continued presence of o-cymene makes this fennel oil a rather unique chemotype. An evident correlation between the antifungal activity and phenological stage is demonstrated. The most active fractions were particularly rich in estragole, as well as a significant amount of fenchone that possibly exerts some additive effect in the expression of overall antifungal potency. Pre-fruiting material produced oil particularly rich in o-cymene. With reference to the duration of the extraction, the maximum amount of oil was released within the first 3 h, whereas the reproductive phase material needed at least 6 h for the extraction.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Foeniculum/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Allylbenzene Derivatives , Anisoles/analysis , Antifungal Agents/chemistry , Bicyclic Monoterpenes , Camphanes , Chemical Fractionation , Cyclohexane Monoterpenes , Distillation , Drug Evaluation, Preclinical , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Italy , Monoterpenes/analysis , Norbornanes/analysis
7.
Molecules ; 22(9)2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28832536

ABSTRACT

A comprehensive study on essential oil and different solvent extracts of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (Lamiaceae) from Montenegro is reported. The gas chromatography-mass spectrometry analysis of the essential oil revealed a total of 43 components with bicyclogermacrene (23.8%), germacrene D (8%), (E)-caryophyllene (7.9%) and spathulenol (5.5%) as the major ones. Sesquiterpenoid group was found to be the most dominant one (64.8%), with 19.9% of the oxygenated forms. In the crude methanol extract of the investigated plant, obtained by Sohhlet exraction, the total phenol content was 14.7 ± 0.4 mg of GA/g, the total flavonoids were 0.29 ± 0.03% expressed as hyperoside percentage, whereas the total tannins content was 0.22 ± 0.04% expressed as pyrogallol percentage. For the antimicrobial activity determination, the following microorganisms have been used: methicillin-susceptible Staphylococcus aureus (MSSA (American Type Culture Collection (ATCC) 29213)) and methicillin-resistant S. aureus (MRSA (clinical strain)), Escherichia coli (ATCC 25922), carbapenem-susceptible Klebsiella pneumoniae (clinical strain), carbapenem-resistant K. pneumoniae (clinical strain) and Candida albicans (ATCC 14053). The essential oil showed high potency against MSSA and MRSA, both at high (~5 × 105 CFU/mL) and low (~5 × 10³ CFU/mL) inoculum. With respect to MSSA, the minimal inhibitory concentration (MIC) value was 0.307 mg/mL, with bactericidal activity obtained at 0.615 mg/mL, while, in the case of MRSA, the MIC and minimal bactericidal concentration (MBC) values were 0.076 and 0.153 mg/mL, respectively. Regarding anti-Candida albicans activity, the MIC value was 2.46 mg/mL without reaching fungicidal activity. In addition to the observed essential oil efficacy, different solvent extracts were analyzed for their antimicrobial activity. Similarly to the essential oil, thehighest efficacy was observed against both MSSA and MRSA strains, at high and low inoculums, in the case of the 1,2-dichloroethane and methanol extracts. A potent fungicidal activity has been also found for the n-hexane and 1,2-dichloroethane extracts. It can be concluded that Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood provides a wide range of application in different fields such as phytochemistry, pharmacology, toxicology or pharmacognosy.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Sideritis/chemistry , Bacteria/drug effects , Chromatography, Gas , Flavonoids/chemistry , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Phenols/chemistry
8.
Food Chem Toxicol ; 106(Pt A): 506-513, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28606765

ABSTRACT

Piperitenone oxide, a natural flavouring agent also known as rotundifolone, has been studied for the genotoxicity assessment by an integrated in vitro and in silico experimental approach, including the bacterial reverse mutation assay, the micronucleus test, the comet assay and the computational prediction by Toxtree and VEGA tools. Under our experimental conditions, the monoterpene showed to induce both point mutations (i.e. frameshift, base-substitution and/or oxidative damage) and DNA damage (i.e. clastogenic or aneuploidic damage, or single-strand breaks). Computational prediction for piperitenone oxide agreed with the toxicological data, and highlighted the presence of the epoxide function and the α,ß-unsaturated carbonyl as possible structural alerts for DNA damage. However, improving the toxicological libraries for natural occurring compounds is required in order to favour the applicability of in silico models to the toxicological predictions. Further in vivo evaluations are strictly needed in order to evaluate the role of the bioavailability of the substance and the metabolic fate on its genotoxicity profile. To the best of our knowledge, these data represent the first evaluation of the genotoxicity for this flavour compound and suggest the need of further studies to assess the safety of piperitenone oxide as a flavouring agent.


Subject(s)
Monoterpenes/toxicity , Oxides/toxicity , Plant Extracts/toxicity , Cell Survival/drug effects , Comet Assay , Computer Simulation , DNA Damage/drug effects , Hep G2 Cells , Humans , Mentha/chemistry , Micronucleus Tests , Monoterpenes/chemistry , Mutagenicity Tests , Mutation/drug effects , Oxides/chemistry , Plant Extracts/chemistry , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
9.
Nat Prod Res ; 31(20): 2387-2396, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28361547

ABSTRACT

Steam distillation is known to be the most prevalent method of essential oil extraction. Despite many studies on extraction methods, there is no report about the impact of distillation process duration on the yield and oil quality. A new 24-h steam distillation process for extraction of plant essential oils is presented. For improving the total yield, prolonged and continued isolation was used. A selection of plant species from Lamiaceae and Apiaceae families was subjected to direct steam distillation and essential oils were collected at different times (1, 2, 3, 6, 12 and 24 h). The analysis included either annual or perennial species monitored in terms of different harvesting time. From these studies, it is conclusively that there is no rule about appropriate extraction time, and different plants need different periods for the essential oils to achieve the desired quality or quantity of extract. Thus, extraction duration is directly dependent on what the study is conducted for.


Subject(s)
Apiaceae/chemistry , Distillation/methods , Lamiaceae/chemistry , Oils, Volatile/isolation & purification , Plant Oils/isolation & purification , Italy , Montenegro , Steam
10.
Molecules ; 22(2)2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28216606

ABSTRACT

Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L.) Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L.) Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L.) Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.


Subject(s)
Lamiaceae/chemistry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry , Animals , Anti-Infective Agents/chemistry , Anti-Ulcer Agents/chemistry , Antioxidants/chemistry , Cyclohexane Monoterpenes , Humans , Insecticides/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry
11.
Molecules ; 20(5): 8605-33, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25985361

ABSTRACT

Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS) is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO), the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.


Subject(s)
Mentha/chemistry , Monoterpenes/chemistry , Oils, Volatile/chemistry , Plants, Medicinal/chemistry , Anti-Infective Agents/chemistry , Antihypertensive Agents/chemistry , Antioxidants/chemistry , Cholinesterase Inhibitors/chemistry , Herbal Medicine , Insecticides/chemistry , Medicine, Traditional , Mentha/classification , Monoamine Oxidase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL