Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ Open Ophthalmol ; 5(1): e000462, 2020.
Article in English | MEDLINE | ID: mdl-32426524

ABSTRACT

OBJECTIVES: No therapeutic interventions are currently available for autosomal dominant retinitis pigmentosa (adRP). An RPE65 Asp477Gly transition associates with late-onset adRP, reduced RPE65 enzymatic activity being one feature associated with this dominant variant. Our objective: to assess whether in a proof-of-concept study, oral synthetic 9 cis-retinyl acetate therapy improves vision in such advanced disease. METHODS AND ANALYSIS: A phase 1b proof-of-concept clinical trial was conducted involving five patients with advanced disease, aged 41-68 years. Goldmann visual fields (GVF) and visual acuities (VA) were assessed for 6-12 months after 7-day treatment, patients receiving consecutive oral doses (40 mg/m2) of 9-cis-retinyl acetate, a synthetic retinoid replacement. RESULTS: Pathological effects of D477G variant were preliminarily assessed by electroretinography in mice expressing AAV-delivered D477G RPE65, by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyme- thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays on RPE viability and enzyme activity in cultured cells. In addition to a mild dominant effect reflected in reduced electroretinographics in mice, and reduced cellular function in vitro, D477G exhibited reduced enzymatic RPE65 activity in vitro. In patients, significant improvements were observed in GVF from baseline ranging from 70% to 200% in three of five subjects aged 67-68 years, with largest improvements at 7-10 months. Of two GVF non-responders, one had significant visual acuity improvement (5-15 letters) from baseline after 6 months. CONCLUSION: Families with D477G variant have been identified in Ireland, the UK, France, the USA and Canada. Effects of single 7-day oral retinoid supplementation lasted at least 6 months, possibly giving visual benefit throughout remaining life in patients with advanced disease, where gene therapy is unlikely to prove beneficial.

2.
Brain ; 135(Pt 12): 3599-613, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23250881

ABSTRACT

Dominant optic atrophy is a rare inherited optic nerve degeneration caused by mutations in the mitochondrial fusion gene OPA1. Recently, the clinical spectrum of dominant optic atrophy has been extended to frequent syndromic forms, exhibiting various degrees of neurological and muscle impairments frequently found in mitochondrial diseases. Although characterized by a specific loss of retinal ganglion cells, the pathophysiology of dominant optic atrophy is still poorly understood. We generated an Opa1 mouse model carrying the recurrent Opa1(delTTAG) mutation, which is found in 30% of all patients with dominant optic atrophy. We show that this mouse displays a multi-systemic poly-degenerative phenotype, with a presentation associating signs of visual failure, deafness, encephalomyopathy, peripheral neuropathy, ataxia and cardiomyopathy. Moreover, we found premature age-related axonal and myelin degenerations, increased autophagy and mitophagy and mitochondrial supercomplex instability preceding degeneration and cell death. Thus, these results support the concept that Opa1 protects against neuronal degeneration and opens new perspectives for the exploration and the treatment of mitochondrial diseases.


Subject(s)
GTP Phosphohydrolases/genetics , Gene Expression Regulation/genetics , Mitochondrial Diseases/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/physiopathology , Sequence Deletion/genetics , Acoustic Stimulation , Age Factors , Aging, Premature/genetics , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Chi-Square Distribution , Creatine/metabolism , Disease Models, Animal , Disease Progression , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Complex IV/metabolism , Electroretinography , Evoked Potentials, Auditory, Brain Stem/genetics , Evoked Potentials, Visual/genetics , Glycolysis/genetics , Humans , Lactic Acid/metabolism , Locomotion/genetics , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondrial Diseases/complications , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Nervous System/pathology , Nervous System/ultrastructure , Optic Atrophy, Autosomal Dominant/pathology , Optic Atrophy, Autosomal Dominant/rehabilitation , Optic Nerve/pathology , Optic Nerve/physiopathology , Optic Nerve/ultrastructure , Phenotype , Physical Conditioning, Animal , Psychoacoustics , Psychomotor Performance/physiology , Reaction Time/genetics , Retina/pathology , Retina/physiopathology , Retina/ultrastructure , Retinal Ganglion Cells/pathology
3.
Neuropsychopharmacology ; 34(2): 424-35, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18536705

ABSTRACT

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the proopiomelanocortin (POMC)-derived peptide, alpha-melanocyte-stimulating hormone (alpha-MSH), exert anorexigenic activities. While alpha-MSH is known to inhibit food intake and stimulate catabolism via activation of the central melanocortin-receptor MC4-R, little is known regarding the mechanism by which PACAP inhibits food consumption. We have recently found that, in the arcuate nucleus of the hypothalamus, a high proportion of POMC neurons express PACAP receptors. This observation led us to investigate whether PACAP may inhibit food intake through a POMC-dependent mechanism. In mice deprived of food for 18 h, intracerebroventricular administration of PACAP significantly reduced food intake after 30 min, and this effect was reversed by the PACAP antagonist PACAP6-38. In contrast, vasoactive intestinal polypeptide did not affect feeding behavior. Pretreatment with the MC3-R/MC4-R antagonist SHU9119 significantly reduced the effect of PACAP on food consumption. Central administration of PACAP induced c-Fos mRNA expression and increased the proportion of POMC neuron-expressing c-Fos mRNA in the arcuate nucleus. Furthermore, PACAP provoked an increase in POMC and MC4-R mRNA expression in the hypothalamus, while MC3-R mRNA level was not affected. POMC mRNA level in the arcuate nucleus of PACAP-specific receptor (PAC1-R) knock-out mice was reduced as compared with wild-type animals. Finally, i.c.v. injection of PACAP provoked a significant increase in plasma glucose level. Altogether, these results indicate that PACAP, acting through PAC1-R, may inhibit food intake via a melanocortin-dependent pathway. These data also suggest a central action of PACAP in the control of glucose metabolism.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Eating/drug effects , Hypothalamus/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology , Pro-Opiomelanocortin/metabolism , Animals , Arcuate Nucleus of Hypothalamus/drug effects , Blood Glucose/analysis , Corticosterone/blood , Dose-Response Relationship, Drug , Eating/physiology , Hypothalamus/drug effects , Male , Melanocyte-Stimulating Hormones/pharmacology , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Neuropeptide Y/metabolism , Peptide Fragments/pharmacology , Pituitary Adenylate Cyclase-Activating Polypeptide/antagonists & inhibitors , Pro-Opiomelanocortin/genetics , RNA, Messenger/metabolism , Receptor, Melanocortin, Type 3/antagonists & inhibitors , Receptor, Melanocortin, Type 3/metabolism , Receptor, Melanocortin, Type 4/antagonists & inhibitors , Receptor, Melanocortin, Type 4/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/genetics , Vasoactive Intestinal Peptide/pharmacology
4.
J Pharmacol Exp Ther ; 314(2): 745-52, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15872042

ABSTRACT

Prepro-vasoactive intestinal peptide (VIP) mRNA codes for two neuropeptides: VIP and peptide histidine isoleucine (PHI). Two VIP receptors, shared with a similar affinity by pituitary adenylate cyclase-activating polypeptide (PACAP), have been cloned: VPAC(1) and VPAC(2). PHI binds to these receptors with a lower affinity. VPAC receptors are classically associated with a cAMP-dependent pathway, although other pathways, including calcium mobilization and protein kinase C activation have been described. We previously showed that intracerebral administration of the glutamate agonist ibotenate to postnatal day 5 mice induces white matter lesions mimicking human periventricular leukomalacia. In this model, coinjection of VIP protects against white matter lesions. This neuroprotection is independent from cAMP and is mediated by protein kinase C. Using this model, this study aimed to determine the receptor involved in VIP-induced neuroprotection. VIP effects were mimicked with a similar potency by VPAC(2) agonists and PHI but not by VPAC(1) agonists, PACAP 27, or PACAP 38. VIP neuroprotective effects were lost in mice lacking VPAC(2) receptor. In situ hybridization confirmed the presence of VPAC(2) mRNA in the postnatal day 5 white matter. When analyzed between embryonic life and adulthood, VIP-specific binding site density peaked at postnatal day 5. These data suggest that, in this model, VIP-induced neuroprotection is mediated by VPAC(2) receptors. The pharmacology of this VPAC(2) receptor seems unconventional because 1) PACAP does not mimic VIP effects, 2) PHI acts with a comparable potency, and 3) PACAP 27 modestly inhibited the VIP-specific binding, whereas for PHI or VIP, inhibition was complete.


Subject(s)
Animals, Newborn/physiology , Neuroprotective Agents/pharmacology , Receptors, Vasoactive Intestinal Peptide/drug effects , Vasoactive Intestinal Peptide/pharmacology , Animals , Brain Chemistry/drug effects , Female , Ibotenic Acid/pharmacology , In Situ Hybridization , In Vitro Techniques , Male , Membranes/drug effects , Membranes/metabolism , Mice , Nerve Growth Factors/metabolism , Neuropeptides/metabolism , Neurotransmitter Agents/metabolism , Peptide PHI/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide , Pregnancy , Prosencephalon/drug effects , Prosencephalon/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Cell Surface/drug effects , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide , Receptors, Vasoactive Intestinal Peptide, Type II
SELECTION OF CITATIONS
SEARCH DETAIL