Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Integr Cancer Ther ; 21: 15347354221123055, 2022.
Article in English | MEDLINE | ID: mdl-36154513

ABSTRACT

PURPOSE: Around three quarters of individuals undergoing chemotherapy self-report multiple symptoms. There is clinical trial evidence of effectiveness for acupuncture for commonly experienced symptoms, and emerging evidence for reflexology, but little is known about the effects of these therapies on multiple symptoms when implemented in a real world setting during active chemotherapy treatment. METHODS: This was a cohort study of participants receiving reflexology and/or acupuncture while attending chemotherapy. Participants received a 20 minute reflexology treatment or a 20 minute acupuncture treatment or a combination of both. Patient reported outcome measures were administered before and after the treatment using the Edmonton Symptom Assessment Scale (ESAS). RESULTS: During the study period, 330 unique patients received a total of 809 acupuncture and/or reflexology treatments. Participants had, on average, 5.3 symptoms each which they reported as moderate to severe (≥4/10) using the ESAS at baseline. Following treatment, participants reported 3.2 symptoms as moderate to severe. The symptom change for all participant encounters receiving any therapy was statistically significant for all symptoms, and clinically significant (a reduction of more than 1) for all symptoms except financial distress, appetite, and memory. Clinically significant levels of global distress (<3) were reduced in 72% of all participants receiving either therapy. No adverse events were recorded. CONCLUSIONS: The results indicate that acupuncture and reflexology administered alongside chemotherapy may reduce patient reported symptom burden and patient global symptom related distress. Future research would include an active control group, and consider confounding factors such as chemotherapy stage and medication.


Subject(s)
Acupuncture Therapy , Musculoskeletal Manipulations , Acupuncture Therapy/methods , Cohort Studies , Humans
2.
Cochrane Database Syst Rev ; 9: CD008294, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32990945

ABSTRACT

BACKGROUND: Pine bark (Pinus spp.) extract is rich in bioflavonoids, predominantly proanthocyanidins, which are antioxidants. Commercially-available extract supplements are marketed for preventing or treating various chronic conditions associated with oxidative stress. This is an update of a previously published review. OBJECTIVES: To assess the efficacy and safety of pine bark extract supplements for treating chronic disorders. SEARCH METHODS: We searched three databases and three trial registries; latest search: 30 September 2019. We contacted the manufacturers of pine bark extracts to identify additional studies and hand-searched bibliographies of included studies. SELECTION CRITERIA: Randomised controlled trials (RCTs) evaluating pine bark extract supplements in adults or children with any chronic disorder. DATA COLLECTION AND ANALYSIS: Two authors independently assessed trial eligibility, extracted data and assessed risk of bias. Where possible, we pooled data in meta-analyses. We used GRADE to evaluate the certainty of evidence. Primary outcomes were participant- and investigator-reported clinical outcomes directly related to each disorder and all-cause mortality. We also assessed adverse events and biomarkers of oxidative stress. MAIN RESULTS: This review included 27 RCTs (22 parallel and five cross-over designs; 1641 participants) evaluating pine bark extract supplements across 10 chronic disorders: asthma (two studies; 86 participants); attention deficit hyperactivity disorder (ADHD) (one study; 61 participants), cardiovascular disease (CVD) and risk factors (seven studies; 338 participants), chronic venous insufficiency (CVI) (two studies; 60 participants), diabetes mellitus (DM) (six studies; 339 participants), erectile dysfunction (three studies; 277 participants), female sexual dysfunction (one study; 83 participants), osteoarthritis (three studies; 293 participants), osteopenia (one study; 44 participants) and traumatic brain injury (one study; 60 participants). Two studies exclusively recruited children; the remainder recruited adults. Trials lasted between four weeks and six months. Placebo was the control in 24 studies. Overall risk of bias was low for four, high for one and unclear for 22 studies. In adults with asthma, we do not know whether pine bark extract increases change in forced expiratory volume in one second (FEV1) % predicted/forced vital capacity (FVC) (mean difference (MD) 7.70, 95% confidence interval (CI) 3.19 to 12.21; one study; 44 participants; very low-certainty evidence), increases change in FEV1 % predicted (MD 7.00, 95% CI 0.10 to 13.90; one study; 44 participants; very low-certainty evidence), improves asthma symptoms (risk ratio (RR) 1.85, 95% CI 1.32 to 2.58; one study; 60 participants; very low-certainty evidence) or increases the number of people able to stop using albuterol inhalers (RR 6.00, 95% CI 1.97 to 18.25; one study; 60 participants; very low-certainty evidence). In children with ADHD, we do not know whether pine bark extract decreases inattention and hyperactivity assessed by parent- and teacher-rating scales (narrative synthesis; one study; 57 participants; very low-certainty evidence) or increases the change in visual-motoric coordination and concentration (MD 3.37, 95% CI 2.41 to 4.33; one study; 57 participants; very low-certainty evidence). In participants with CVD, we do not know whether pine bark extract decreases diastolic blood pressure (MD -3.00 mm Hg, 95% CI -4.51 to -1.49; one study; 61 participants; very low-certainty evidence); increases HDL cholesterol (MD 0.05 mmol/L, 95% CI -0.01 to 0.11; one study; 61 participants; very low-certainty evidence) or decreases LDL cholesterol (MD -0.03 mmol/L, 95% CI -0.05 to 0.00; one study; 61 participants; very low-certainty evidence). In participants with CVI, we do not know whether pine bark extract decreases pain scores (MD -0.59, 95% CI -1.02 to -0.16; one study; 40 participants; very low-certainty evidence), increases the disappearance of pain (RR 25.0, 95% CI 1.58 to 395.48; one study; 40 participants; very low-certainty evidence) or increases physician-judged treatment efficacy (RR 4.75, 95% CI 1.97 to 11.48; 1 study; 40 participants; very low-certainty evidence). In type 2 DM, we do not know whether pine bark extract leads to a greater reduction in fasting blood glucose (MD 1.0 mmol/L, 95% CI 0.91 to 1.09; one study; 48 participants;very low-certainty evidence) or decreases HbA1c (MD -0.90 %, 95% CI -1.78 to -0.02; 1 study; 48 participants; very low-certainty evidence). In a mixed group of participants with type 1 and type 2 DM we do not know whether pine bark extract decreases HbA1c (MD -0.20 %, 95% CI -1.83 to 1.43; one study; 67 participants; very low-certainty evidence). In men with erectile dysfunction, we do not know whether pine bark extract supplements increase International Index of Erectile Function-5 scores (not pooled; two studies; 147 participants; very low-certainty evidence). In women with sexual dysfunction, we do not know whether pine bark extract increases satisfaction as measured by the Female Sexual Function Index (MD 5.10, 95% CI 3.49 to 6.71; one study; 75 participants; very low-certainty evidence) or leads to a greater reduction of pain scores (MD 4.30, 95% CI 2.69 to 5.91; one study; 75 participants; very low-certainty evidence). In adults with osteoarthritis of the knee, we do not know whether pine bark extract decreases composite Western Ontario and McMaster Universities Osteoarthritis Index scores (MD -730.00, 95% CI -1011.95 to -448.05; one study; 37 participants; very low-certainty evidence) or the use of non-steroidal anti-inflammatory medication (MD -18.30, 95% CI -25.14 to -11.46; one study; 35 participants; very low-certainty evidence). We do not know whether pine bark extract increases bone alkaline phosphatase in post-menopausal women with osteopenia (MD 1.16 ug/L, 95% CI -2.37 to 4.69; one study; 40 participants; very low-certainty evidence). In individuals with traumatic brain injury, we do not know whether pine bark extract decreases cognitive failure scores (MD -2.24, 95% CI -11.17 to 6.69; one study; 56 participants; very low-certainty evidence) or post-concussion symptoms (MD -0.76, 95% CI -5.39 to 3.87; one study; 56 participants; very low-certainty evidence). For most comparisons, studies did not report outcomes of hospital admissions or serious adverse events. AUTHORS' CONCLUSIONS: Small sample sizes, limited numbers of RCTs per condition, variation in outcome measures, and poor reporting of the included RCTs mean no definitive conclusions regarding the efficacy or safety of pine bark extract supplements are possible.


Subject(s)
Antioxidants/therapeutic use , Chronic Disease/drug therapy , Flavonoids/therapeutic use , Plant Bark/chemistry , Plant Extracts/therapeutic use , Adolescent , Adult , Asthma/drug therapy , Attention Deficit Disorder with Hyperactivity/drug therapy , Bias , Bone Diseases, Metabolic/drug therapy , Brain Injuries, Traumatic/drug therapy , Cardiovascular Diseases/drug therapy , Child , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Erectile Dysfunction/drug therapy , Female , Humans , Hypertension/drug therapy , Male , Middle Aged , Osteoarthritis/drug therapy , Pinus , Randomized Controlled Trials as Topic , Sexual Dysfunctions, Psychological/drug therapy , Venous Insufficiency/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL